摘要:在许多新兴技术中,电池电动汽车(BEV)已成为对严格排放法规的突出和高度支持的解决方案。尽管受欢迎程度越来越大,但可能会危害其进一步传播的主要挑战是缺乏充电基础设施,电池寿命降级以及实际和有望的全电动驾驶范围之间的差异。本文的主要重点是制定综合能量和热舒适管理(IETM)策略。此策略可最佳地管理供暖,通风和空调(HVAC)单元所需的电能,这是电池负荷上最受影响的辅助设备,以最大程度地减少电池寿命在任何特定的驱动循环中的降解,同时确保实际的机舱温度徘徊在允许的公寓内悬停在参考机舱温度中允许的公寓温度限制内,并且驾驶员的驾驶员启动了驱动器,并始终启动。这项工作结合了健康(SOH)估计模型,高保真舱室热力学模型以及HVAC模型的市售BEV的前向示例模拟模型,以展示提出的增强电池寿命的IETM IETM策略的效果和功效。IETM的瞬时优化问题是通过利用目标函数凸度的黄金搜索方法来解决的。在不同的驾驶场景下进行的模拟结果表明,提议的物品控制器带来的改进可以将电池健康降解最大化高达4.5%,能源消耗量最高2.8%,同时将机舱温度偏差保持在允许的范围内,从而在允许的限制范围内与参考温度保持一致。
•可惜的合成层:这种定制设计和制造的抗火焰合成层高度耐用,可以在任何PLEATER类型(旋转/刀片)上以不同的褶高高度打pleat,从而可以卓越的加工性和滤镜设计灵活性。•具有我们的Nanoweb™技术的图层:亚军专利的耐用合成纤维,通过其纤维直径接近性能的滑动区域,提供最佳的高效率和低压下降,延长车辆中的滤光度寿命和延长车辆的能量。•熔体层:放置在最终滤波器的上游时,该保护层即使没有单独的前滤器也可以延长过滤器的寿命和容量。此设计节省了最终车辆空调单元中的过滤器生产成本和空间。
当考虑像飞机客舱这样非常特殊的领域时,通信要求就会提高。乘客的不同需求往往与客舱内的严格限制不相容。如今,机上娱乐 (IFE) 系统在现代航班中得到了广泛的应用。IFE 系统通常由座椅电子盒、乘客终端硬件、乘客控制单元、用于选择服务的遥控器以及视频显示单元(屏幕)组成。在这些系统中使用无线技术可以提高乘客和航空电子公司的满意度。然而,客舱内部并不是一个灵活的环境;可靠性和安全性是两个强制性要求,因此对其施加了不同的限制。这意味着现成的技术(包括天线、网络拓扑、网络协议和服务在内的硬件)通常不适合这样的环境。因此,必须设计和实施一种新的架构。本文旨在整合现有的异构通信技术,展示其优缺点,同时考虑到飞机客舱内施加的通信限制。由此,提出了一种新的无线异构架构。此外,为了能够使用这种架构,我们提出了一种新协议,该协议利用智能天线技术允许乘客控制单元被自主识别和配置
摘要 基于模型的系统工程 (MBSE) 是在复杂系统开发中端到端使用数字模型的基本方法。特别是航空业,其系统复杂性不断增加,需要新的概念和方法来克服生态和社会经济挑战。因此,需要特定领域的模型来设计和评估系统,以支持各种系统调查,例如需求管理、安装空间优化或故障分析。与使用孤立的数字子模型、自然语言文档和纯物理原型相比,这些大多是异构系统的端到端耦合和链接具有许多优势(例如更短的开发时间)。此外,数字化允许多个专家团队在同一虚拟产品上进行全球和跨学科的协作。由于这种方法对于飞机客舱配置特别有前景,德国航空航天中心 (DLR) 开发了一个虚拟开发平台,用于飞机客舱及其系统的概念设计。因此,可以快速生成客舱配置的虚拟原型,以便在早期设计阶段可视化和研究新概念。通过功能系统架构和可执行系统架构模型扩展概念舱系统设计流程,可促进信息可追溯性、早期故障检测
系统开发阶段的逐步数字化正在缩短开发时间并降低成本。同时,更复杂系统中的交互越来越多,嵌套程度也越来越高,这影响了人类对系统依赖关系的理解以及对这些依赖关系的建模。这带来了数字化描述系统及其相互关系所需的知识(规则、法规、要求等)的挑战。飞机就是这种系统的一个例子。在实践中,机舱及其系统的技术设计通常与初步飞机设计分开进行,机舱结果将在飞机开发过程的后期进行整合。本文提出了一种概念设计方法,该方法能够根据初步飞机设计数据(参数集)进行机舱系统布局。因此,开发了一个中央数据模型,将机舱组件链接到多个学科,以实现自动布局。在这里,知识存储在本体中。将本体与设计规则链接并导入外部参数,可以生成机舱系统初步设计所需的缺失信息。设计规则基于已收集并形式化的需求、安全法规以及设计解释的专家知识。使用本体,可以实例化 XML 数据结构,其中包含有关属性、系统关系的所有信息
本文介绍了欧盟资助的研究项目 AGILE(2015 – 2018)中针对整体飞机设计的多学科设计和优化 (MDO) 领域的研究活动中所进行的方法研究。在 AGILE 项目中,来自欧洲、加拿大和俄罗斯的 19 个工业、研究和学术合作伙伴组成的团队正在共同开发下一代 MDO 环境,旨在大幅降低飞机开发成本和上市时间,从而生产出更便宜、更环保的飞机。本文介绍了 AGILE 项目结构,并描述了第一年取得的成果,这些成果催生了参考分布式 MDO 系统。然后,重点介绍了第二年研究的各种新型优化技术,所有这些技术都旨在简化复杂工作流程的优化,这些工作流程的特点是学科相互依赖性高,设计变量多,涉及多层次流程和多合作伙伴协作工程项目。本文针对传统飞机引入并验证了三种优化策略。首先,在机翼设计问题上使用基于纳什博弈和遗传算法的多目标技术。然后对发动机舱设计进行深入研究,使用基于代理的优化器来解决单目标问题。最后采用稳健方法来研究参数不确定性对发动机舱设计过程的影响。这些新功能
摘要:直升机紧急医疗服务 (HEMS) 车辆需要特殊配置的机舱,以支持快速将救援队运送到紧急情况现场并将患者送回满负荷的医院,同时使用专门设计但最先进的生命支持设备维持患者的健康。服务的有效性和安全性可能会受到振动水平的挑战,可以通过在机舱内最佳地定位受影响的受试者来改善。然而,机身的裸露动态响应可能导致对振动性能的错误评估,因为飞行员、机组人员、患者和医疗设备通过他们与结构的接口与直升机动态交互。因此,HEMS 车辆的低振动布局优化需要能够有效地分析大量候选耦合直升机接口受试者配置,在模型细节和计算成本之间达到适当的权衡。这项工作提出了一种有效的医疗直升机振动等级,以通过最小化机舱内部加速度来支持减少振动危害。该工具能够对高保真旋翼机气动伺服弹性进行建模,轻松连接表示人、设备及其界面动力学的公式,并计算所得耦合模型的振动性能。该方法适用于中型直升机
信息技术流程描述和人机界面 (HMI) 这一新流程是利用端到端数字流程集成开发的。实际上,这意味着测量数据管理由空中客车计量软件套件提供,并与产品数据管理和空中客车操作系统相链接。在这个系统中,通过摄影测量、激光跟踪器和光电技术获得的数据与技术人员易于使用的 HMI 完全集成。用户体验已证实,以操作员为中心的 HMI 降低了操作员的复杂性,如图 2、3、4 和 5 所示。