AGARD 结构和材料小组于 1986 年主办了一次专家会议,以评估“复合材料飞机结构修复”AGARD-CP-402 的最新技术。当时的大多数论文都集中在金属或复合材料结构的仓库或现场维修示例以及不同类型飞机结构的设计标准和分析概念上。八年后,在 1994 年秋季的第 79 次会议上,结构和材料小组举行了一次专家会议,讨论军用飞机的复合材料修复。会议主要关注两个领域,即使用复合材料修补片修复金属结构和使用复合材料或金属修补片修复复合材料结构,在 3 个会议上提交了 24 篇论文。所提交的工作直接应用于军用飞机的维护和支持。军用飞机的维修既可以延长机身的使用寿命,使其超过原始设计寿命,也可以通过让受损飞机重新投入使用来保持军事战备状态。
该项目之所以特殊,是因为其先进的特性支持 F-35 在法伦海军航空站的部署。法伦海军航空站是美国海军首屈一指的空对空和空对地训练场,也是海军航空作战发展中心 (NAWDC) 的所在地,其中包括 TOPGUN、舰载机载预警武器学校 (CAEWWS) 和海军旋翼武器学校。整个设施按照 ICD 705 标准建造,符合 TEMPEST 三级建设要求,并支持多个机密网络,包括 SIPRNET、ALIS、JWICS 和同步任务回放 (SMP) 系统。需要密切协调通信基础设施,以满足 SCIF(安全设施)内各个隔离区域 (CA) 的 TEMPEST 分离要求。还在需要的地方为在低机密区域运行的机密级别较高的网络在分隔区域之间提供了保护性分配系统。这是美国海军首个此类新设施,极大地提高了其训练能力,尤其是针对 F-35 机身的训练能力。
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间的整流罩区域的视觉上可区分的曲线。介绍了 B-29 和 B-737 的两个案例研究,展示了如何近似机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,将增强飞机概念设计和飞行性能优化研究。
NATO-RAMS 专注于军事飞行医学,重点关注欧洲地区,是与专业同事对话的独特论坛。本课程的目标是由来自北约国家的一组专家讲师向北约飞行外科医生提供航空航天医学的最新知识和实践,分享国家实践,并在最广泛的背景下评估航空航天医学和人体性能方面的新兴技术。本课程将涵盖部署区域和跨国环境中航空航天医学的当前和未来挑战,重点关注作战航空医学。将比较各种方法的风险和优势,以推荐最佳实践并从而提高互操作性。天空不再是极限 随着下一代机身的发展以及对月球和火星任务的重新关注,航空医学的重要性和关注度不断增长。此次扩展包括更加关注大气层以外的作战领域,以及突破人类表现和作战医学的界限。您可能希望在演示文稿、小组讨论、海报或工作组中考虑的主题包括航空航天医学方面:
摘要 本研究介绍了用于组装多功能热塑性机身的创新工具和末端执行器系统的开发。对更清洁和新型飞机的需求日益增长,这要求使用新材料和技术。先进的热塑性复合材料由于其可焊性、低密度、低总生产成本、改进的断裂韧性和可回收性而成为一种极好的材料选择。然而,要充分发挥它们的潜力,需要新的制造方法和技术。因此,该项目开发了三种末端执行器解决方案,以证明组装全尺寸多功能集成热塑性下机身外壳的可行性,包括集成全装备的地板和货物结构。开发的组装解决方案包括三个独立但集成良好的工具系统,可用于容纳外壳和组装件;拾取、放置和焊接组装件,即夹子和纵梁;以及焊接框架和地板梁子组件。本文详细介绍了开发这些系统的过程,包括最终用户要求、技术挑战、工具和末端执行器设计和制造过程。
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同的设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间整流罩区域的视觉上可区分的曲线。介绍了两个关于 B-29 和 B-737 的案例研究,展示了如何近似其机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与其原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,以增强飞机概念设计和飞行性能优化研究。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
简介 飞行控制系统的架构对所有飞行操作都至关重要,多年来,其架构发生了重大变化。首次飞行后不久,铰接式表面就被引入用于基本控制,由飞行员通过电缆和滑轮系统进行操作。这项技术存活了几十年,现在仍用于小型飞机。大型飞机的引入和飞行包线的增加使得飞行员的肌肉力量在许多情况下不足以抵消由于表面偏转而产生的气动铰链力矩;该问题的第一个解决方案是引入气动平衡器和调整片,但飞机尺寸和飞行包线的进一步增长带来了对动力系统的需求,以控制铰接式气动表面。如今,可以找到两大类飞行控制系统:滑翔机和小型通用航空的全机械控制,以及大型或战斗机的动力或伺服辅助控制。伺服机构引入后,最大的附加效应之一就是可以使用主动控制技术,直接作用于飞行控制执行器,从而带来一系列好处: • 补偿基本机身的空气动力学缺陷; • 稳定和控制通常性能更高的不稳定飞机; • 大迎角飞行; • 自动失速和旋转保护; • 阵风缓解。
摘要:结构健康监测被认为是提高航空安全性和降低运营成本的可行解决方案,它可以根据机身的实际状况实现一种新颖的维护方法,从而降低定期检查带来的运营成本。然而,净收益几乎没有得到证明,而且目前还不清楚这种自主系统的实施如何影响飞机层面的性能。为了弥补这一差距,本文提出了一个系统分析,其中集成永久连接的传感器(用于诊断)的成本和重量对飞机主要性能的影响。通过多学科飞机分析框架,将飞机运行空重的增量与直接运营成本方面的可能收益进行比较,以确定盈亏平衡点。此外,该分析允许为结构健康监测系统建立设计指南,使飞机更安全,而不会产生任何经济损失。结果表明,运营成本低于参考飞机,最大起飞重量最多增加 4%。论文研究结果表明,从概念设计阶段开始就应考虑状态监测策略,因为这样可以最大限度地发挥这种创新技术的影响。然而,这涉及全新飞机的设计,而不是对现有飞机的改造。