简介 飞行控制系统的架构对所有飞行操作都至关重要,多年来,其架构发生了重大变化。首次飞行后不久,铰接式表面就被引入用于基本控制,由飞行员通过电缆和滑轮系统进行操作。这项技术存活了几十年,现在仍用于小型飞机。大型飞机的引入和飞行包线的增加使得飞行员的肌肉力量在许多情况下不足以抵消由于表面偏转而产生的气动铰链力矩;该问题的第一个解决方案是引入气动平衡器和调整片,但飞机尺寸和飞行包线的进一步增长带来了对动力系统的需求,以控制铰接式气动表面。如今,可以找到两大类飞行控制系统:滑翔机和小型通用航空的全机械控制,以及大型或战斗机的动力或伺服辅助控制。伺服机构引入后,最大的附加效应之一就是可以使用主动控制技术,直接作用于飞行控制执行器,从而带来一系列好处: • 补偿基本机身的空气动力学缺陷; • 稳定和控制通常性能更高的不稳定飞机; • 大迎角飞行; • 自动失速和旋转保护; • 阵风缓解。