记录的版本:该预印本的一个版本于2024年4月3日在聚合物研究杂志上发表。请参阅https://doi.org/10.1007/s10965-024-03962-0。
通过遵循本指南,用户将能够将更新应用于18KPV混合逆变器和Wallmount电池,该电池允许用户通过逆变器执行远程电池更新。在执行更新之前,请彻底阅读指南。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月1日。; https://doi.org/10.1101/2024.03.27.583983 doi:biorxiv Preprint
摘要:越来越多的光学卫星任务对陆地地球系统的连续监测为植被和农田特征提供了宝贵的见解。卫星任务通常提供不同级别的数据,例如1级大气顶(TOA)辐射率和2级大气底(BOA)反射率产品。开发TOA辐射数据直接提供了绕过复杂大气校正步骤的优势,在该步骤中,错误可以在其中进行预测并损害随后的检索过程。因此,我们研究的目的是开发能够从成像光谱卫星任务中直接从TOA辐射数据中检索植被特征的模型。为了实现这一目标,我们基于辐射转移模型(RTM)模拟数据构建了混合模型,从而采用了植被范围RTM与大气libradtran RTM结合使用高斯工艺回归(GPR)。重点是植被冠层特征的重新评估,包括叶子面积指数(LAI),冠层叶绿素含量(CCC),冠层水含量(CWC),吸收的光合式活性辐射(FAPAR)的分数以及植被覆盖的分数(FVC)。使用即将到来的哥白尼高光成像任务(Chime)的带设置,评估了两种类型的混合GPR模型:(1)使用TOA辐射数据在1级(L1)培训的一种培训,并且(2)使用BOA反射率数据在2级(L2)训练。基于TOA和BOA的GPR模型均已针对原位数据验证,并具有从现场活动中获得的相应高光谱数据。基于TOA的混合GPR模型揭示了从中度到最佳结果的一系列性能,因此达到R 2 = 0.92(LAI),R 2 = 0.72(CCC)和0.68(CCC)和0.68(CWC),R 2 = 0.94(FAPAR)和R 2 = 0.95(FVC)。为了证明模型的适用性,随后将基于TOA和BOA的GPR模型应用于科学前体任务Prisma和Enmap的图像。所产生的性状图在基于TOA和BOA的模型之间显示出足够的一致性,相对误差在4%至16%之间(R 2在0.68和0.97之间)。总的来说,这些发现阐明了机器学习混合模型的开发和增强的路径,以估算直接在TOA水平下定制的植被特征。
fi g u r e 6上排:挪威云杉和西伯利亚云杉的Rona地图(无适应性的风险),用于最重要的三个生物气候变量。根据Rellstab等人评估Rona。(2016),使用来自当前环境变量和等位基因频率的线性回归的变化系数。右下:平均RONA(最左侧的地块)和Rona在这两个物种和混合人群之间的每个生物气候变量。使用RONA值和与人口状态相对应的三级因子之间的线性回归测试了“纯”种群与杂种之间差异的显着性(P. Abies,P。obovata和Hybrid)。*** p <.001; ** p <.01; * p <.05; NS P> .05。地图线描绘了研究区域,不一定描绘了公认的国家边界。
在塞尔维亚,有 4 到 6 种基因型的母鸡用于产蛋,包括杂交 Tetra SL。商业鸡群的正确饲养对于及时产蛋、产蛋强度、产蛋数量和母鸡使用时间至关重要。本文旨在分析杂交 Tetra SL 后代从 1 日龄鸡到 18 周龄鸡的饲养结果,并回顾国内生产商必须调整的条件,以达到欧盟蛋鸡养殖系统的标准。在饲养期开始时,将 9500 头鸡放入两个对象中,共计 19000 只 1 日龄鸡。在这两个相同的对象中应用完全相同的饲养技术。这些鸡是同一年龄和品系的杂交鸡,使用同一制造商的设备,因此成本相同。鸡分别在第一天和第十天去喙。使用比较方法。饲养者遵守杂交选择者推荐的技术规范。从饲养开始到结束(第 18 周),特别注意提高鸡的体重和活力。关键词:家禽、杂交 Tetra SL、后代饲养、死亡率、第 18 周鸡、欧盟标准。引言家禽饲养,从孵化蛋到最终产品(供食用的肉和蛋),过去即使在不同的饲养系统中也是一个单一的过程(Živković 等人,1991 年),而今天这种生产的每个阶段都是单独进行的,因此,这是一个主要行业,即生产的一个方向。通过这种方式,今天我们已经定义了对住房、适当饲料、微气候(环境)条件和
•策略管理:最大程度地减少网络拥塞涉及防止一个细分市场的性能影响另一部分,以确保特定应用程序的一致和最佳性能。例如,在其专用细分市场上使用店内访客Wi-Fi不会干扰单独的细分市场上发生的信用卡交易速度。
植物组织再生对于遗传转化和基因组编辑技术至关重要。在再生过程中,表观遗传修饰的变化伴随着细胞命运的转变。然而,两种单倍型中的等位基因特异性 DNA 甲基化如何影响再生过程中的转录动力学仍不清楚。在这里,我们应用跨物种杂交杨(Populus alba × P. glutumoosa cv. 84 K)作为一个系统,在等位基因水平上表征从头芽器官发生过程中的 DNA 甲基化景观。直接和间接芽器官发生均显示全基因组 DNA 甲基化的降低。在基因水平上,与表达基因相比,未表达基因的甲基化程度较高。在 DNA 甲基化水平与基因表达之间表现出显著相关性的基因中,75% 的基因的表达模式与 CG 环境中的 DNA 甲基化呈负相关,而 CHH 环境中的相关性模式则相反。等位基因偏向的DNA甲基化在芽器官发生过程中是一致的,等位基因特异性甲基化区域偏移的概率不到千分之一。等位基因特异性表达分析表明,在再生过程中只有1909个基因表现出相位依赖性的等位基因偏向表达,其中启动子区域转录因子结合位点差异较大的等位基因对表现出较大的等位基因表达差异。我们的研究结果表明,在芽器官发生过程中,两个亚基因组中的转录调控相对独立,这是由顺式作用基因组和表观基因组变异所致。
自交物种中生长时间的延长(Barrett & Charlesworth, 1991)可以解释自交物种中观察到的较低杂种优势水平。杂种优势的程度在物种内测量性状、遗传背景(Tracy & Chandler, 2006)和测试环境(Flint-Garcia et al., 2009; Lippman & Zamir, 2007; Mindaye et al., 2016)之间差异很大。在没有过度遗传漂变或足够基因流的情况下,植物种群倾向于适应来自生物和非生物挑战的人工或自然选择力量,从而导致对环境的局部适应(Janzen et al., 2022; Leimu & Fischer, 2008)。可以在认为当地植物类型相对于外来引进植物具有适应性的环境中测试当地植物和外来植物性能之间的区别(Kawecki & Ebert, 2004)。鉴于遗传分化和杂种优势之间的普遍关联 (Jordan et al., 2003; Moll et al., 1965; Zhang et al., 2010),不同环境中遗传和表型分化的相互作用对于理解和利用多种来源材料的作物育种计划中的杂种优势至关重要。
1呼吸道健康研究所,中国四川大学西中国医院的边境科学中心,中国成都; 2中国四川医院四川省的精密医学中心,中国成都四川大学; 3中国西中国医院的呼吸健康和多医生的国家主要实验室; 4中国四川大学西中国医院呼吸健康与多种病房研究所; 5中国的研究部门,中国医学院,西中国医院,成都,中国四川,中国; 6国家癌症中心/国家癌症/癌症医院国家临床研究中心,中国医学科学院和北京联合医学院,中国100021; 7中国四川大学西川肺和重症监护医学系,中国四川; 8西中国基础医学科学与法医医学学院致病生物学系,中国四川大学,中国成都; 9广州国家实验室,中国广州510005,广东;