我们研究了杂质在混沌介质中移动的随机幺正电路模型。介质和杂质之间的信息交换通过改变杂质的速度vd (相对于信息在介质中传播的速度v B )来控制。在超音速以上,vd > v B ,信息在进入介质后无法流回杂质,由此产生的动力学是马尔可夫的。在超音速以下,vd < v B ,杂质和介质的动力学是非马尔可夫的,信息能够流回杂质。我们表明,这两个状态由连续相变分隔,其指数与介质中算子的扩散扩展直接相关。通过监测非时间序相关器(OTOC),在中间时间替换杂质的场景中证明了这一点。在马尔可夫阶段,来自介质的信息无法转移到被替换的杂质上,表现为没有显著的算子发展。相反,在非马尔可夫阶段,我们观察到算子获得了对新引入的杂质的支持。我们还使用相干信息来表征动态,并提供两个解码器,可以有效地探测马尔可夫和非马尔可夫信息流之间的转换。我们的工作表明,马尔可夫和非马尔可夫动态可以通过相变来分离,我们提出了一种观察这种转变的有效协议。
作为晶圆清洁过程,RCA(美国无线电公司)清洁主要使用。但是,RCA清洁存在诸如洗澡生活不稳定,重新吸附杂质和高温清洁等问题。在此,我们试图通过使用螯合剂(草酸)解决这些问题来提高硅晶片的纯度。通过参考Pourbaix图,可以鉴定出由清洁液和每个金属粉之间反应产生的化合物。所有金属在反应前均表现出10μm或更高的粒径分布,但反应后的粒径分布为500 nm。在适当的情况下,可以证实反应前后的金属显示出不同的吸光度。由于通过这种清洁溶液清洗了回收硅晶片表面的元素分析,因此证实除了SI以外,未检测到其他次级。关键字:回收硅晶片,晶圆清洁,金属杂质,金属复合物,螯合剂
亚硝胺药物相关杂质 (NDSRI) 是一类 N -亚硝胺 (亚硝胺) 杂质,其结构与药品中的活性药物成分 (API) 相似。(请参阅 FDA 关于人用药物中亚硝胺杂质的行业控制指南(2024 年 9 月)、亚硝胺药物相关杂质 (NDSRI) 的推荐可接受摄入量限值(2023 年 8 月)、CDER 亚硝胺杂质可接受摄入量限值(2024 年 10 月))。FDA 正在告知含利托那韦产品的制造商和申请人,包括那些正在等待 FDA 审批的申请的制造商和申请人,FDA 对此类药品中可能存在的亚硝胺杂质的担忧。亚硝胺杂质含有亚硝基,因此它们被归类为 M7(R2) DNA 反应性杂质指南中所述的高致癌性“关注群体”。(请参阅 FDA 行业指南 M7(R2)《评估和控制药品中的 DNA 反应性(致突变性)杂质以限制潜在致癌风险》(2023 年 7 月))。
物理特性 颜色 目测 象牙色 密度 g/cm3 ASTM C373-88, ASTM C20 3.91 晶粒尺寸 微米 ASTM E112-10 25 结晶相 % Alpha XRD 100 吸水率 % ASTM C373-88 0% 抗弯强度 PSI 3 点 PSI ASTM C1161, F417 39,870 弹性模量 GPA per ASTM C1198 ASTM C1198 347 泊松比 ASTM C848 0.22 抗压强度 (PSI) ASTM C773 323,000 硬度 (GPA) ASTM C1327 维氏 1342 断裂韧性 MPa√m 单边缺口 4.19 添加剂 (YtO3) Wt% ICPMS N/A 杂质 (SiO2 ) PPM GDMS <500 杂质 (Na2O) PPM GDMS <400 杂质 (CaO) PPM GDMS <400 杂质 (K2O) PPM GDMS <100 杂质 (Fe2O3) PPM GDMS <400 杂质 (TiO2) PPM GDMS <100 杂质 (C) PPM GDMS <50 杂质 (S) PPM GDMS <50
为了进一步确定最终产品中各杂质的最大可容忍残留水平,且不增加脱靶编辑,我们分别以差异比例将脱靶风险最高的杂质A02U和U17A添加到FLP中。我们利用这些样本在原代T细胞中进行CRISPR基因编辑,并用Sanger测序评估每个样本在OT1位点(这两个杂质样本中脱靶率最高的位点)的编辑效率(图1)。结果显示,杂质A02U的残留水平为50%,杂质U17A的残留水平为10%会导致脱靶编辑显著增加。当杂质水平低于4%时,本例中观察到的脱靶效应最小。
Casimir效应[1,2]是由于量子真空波动引起的中性物体的相互作用。对高级材料之间Casimir相互作用的研究是一个新的和有希望的研究领域[3]。一方面,这些材料的异常电子特性会对Casimir力产生有趣的影响。另一方面,Casimir实验的提高质量使它们成为探索材料本身的有用工具。dirac材料(在足够低的能量下遵守二级式dirac-type方程)为我们提供了一个量子场理论与凝结物质之间相互作用的示例。石墨烯是该家族的重要代表[4,5]。处理狄拉克材料是很自然的,可以通过清理的极化张量来描述与电磁场的相互作用,并使用此张量来计算Casimir相互作用。在石墨烯的情况下,在[6]和[7]中使用了这种方法,分别在零和非零温度下使用。值得注意的是,石墨烯的Casimir相互作用的极化张量方法是实验中唯一证实的方法[8-11]。所有真实材料都包含杂质。特定形式的杂质可能会有所不同。杂质是指破坏原始材料清洁度的一般形式。在评论[12-15]中可以找到石墨烯样材料中杂质和缺陷的分类。石墨烯的二维性质减少了可能的缺陷和杂质类型的数量。因此,我们不会尝试关键是,它在居住在石墨烯表面外面的ADATOM或替代杂质在能量上有利。可能会被充电[16-18],磁[15],同位素[19,20],拓扑结构(例如五角大州和七肠)[13,21],或者是缺陷和生长诱发的缺陷等缺陷[22]和群集缺陷[12]。有意的杂质通常称为掺杂剂,而杂质本身可以是故意的,也是无意的(意外)。掺杂用于改变材料的物理或化学特性。石墨烯中的杂质[23,24]可能会将狄拉克附近的线性分散体转换为二次的杂质,这表示杂质引起的质量间隙的外观。描述杂质及其对材料物理特性的影响有不同的方法。常见是具有射击或远程电位[13]和散射方法[25,26]的紧密结合模型。使用石墨烯中的各种杂质类型,我们需要一个良好的模型,该模型可以捕获杂质的通用特性,同时非常简单地用于计算偏振张量。一种成功描述杂质的方法在于将准粒子的传播器添加到描述杂质散射率的参数γ。换句话说,γ是fermion自能的虚构部分。在[27 - 31]中的外部磁场存在大多数情况下,这种描述已应用于石墨烯。我们将自己限制在零温度和消失的化学潜力的情况下。[31]的计算与石墨烯中巨型法拉第旋转的测量[32]非常吻合。原则上γ可以取决于频率,尽管保持频率似乎是一个良好的近似值。在这项工作中,我们忽略了杂质的另一个作用,这是它们产生非零化学势µ的能力。在[10,11]中考虑了石墨烯表面上原子(主要是钠)的一种特殊形式的杂质(主要是钠)及其对Casimir力的影响。根据这些论文,这种杂质会导致石墨烯的质量间隙和非零化学潜力,而不是通过散射速率γ描述的杂质散射的出现。本文的主要目标是研究杂质散射速率γ对石墨烯与理想金属之间Casimir相互作用以及两个石墨烯片之间的影响。这是一个简化的设置。
关于药物灭菌的文献有限。本研究旨在评估二氧化氮 (NO 2 ) 灭菌这一新兴技术对五种不同眼科活性药物成分(即盐酸四环素、阿昔洛韦、地塞米松、甲基泼尼松龙和曲安西龙)的效果。测试的 NO 2 过程浓度为 5、10 和 20 mg/L。应用温度为 21 ◦ C,相对湿度为 30 %。过程周期由两个脉冲组成,每个脉冲停留时间为 10 分钟。未处理样品作为空白。通过高效液相色谱联用紫外/可见光检测器评估灭菌方法的效果,用于定量分析降解产物和评估的眼科药物的相对含量。对于盐酸四环素和阿昔洛韦,随着 NO 2 浓度的增加,杂质含量有所增加。考虑到杂质必须符合欧洲药典 (Ph. Eur.) 规定的限度要求,估计最大允许 NO 2 浓度分别为 10 mg/L 和 2.5 mg/L。对于这两种化合物,经 20 mg/L NO 2 处理的样品与未处理样品相比,含量有显著差异。对于甲基强的松龙、地塞米松和曲安西龙,杂质符合 Ph. Eur. 对每种 NO 2 浓度的限度要求,相对含量没有显著影响。由于会导致严重降解,不建议用 NO 2 对盐酸四环素和阿昔洛韦进行灭菌。甲基强的松龙、地塞米松和曲安西龙的 NO 2 灭菌可应用于相关药品的无菌处理程序中。
载流子的迁移率受散射机制影响。散射机制有两种类型——声子和杂质 [A] 电子在固体中的完美周期势中自由移动,不受干扰。• 但热振动会破坏势函数,导致电子或空穴与振动晶格原子之间的相互作用。• 这会影响载流子的速度和迁移率,这称为声子散射。[B] 在半导体中添加杂质原子以控制或改变其特性。• 这些杂质在室温下被电离,因此电子或空穴与电离杂质之间存在库仑相互作用。• 这种库仑相互作用产生散射或碰撞,也会改变电荷载流子的速度:- 杂质散射。
I.简介(1)2药物的合成涉及使用反应性化学物质,试剂,溶剂,催化剂和其他加工辅助物。由于化学合成或随后的降解,杂质存在于所有药物和相关的药物中。尽管国际统一委员会(ICH)新药物质中的工业Q3A杂质指南(修订2)(ICH Q3A)(2008年6月)和新药产品中的Q3B(R2)杂质(ICH Q3b(r2))(2006年8月)(参考(参考)(参考)1,2)为大多数杂质提供了指导和控制的指导,为DNA反应性的那些杂质提供了3个有限的指导。本指南的目的是提供一个适用于这些诱变杂质的识别,分类,资格和控制以限制潜在的致癌风险的实用框架。本指南旨在补充ICH Q3A,ICH Q3B(R2)(注释1)和ICH行业M3(R2)非临床安全研究指南,用于进行人体临床试验和制药的营销授权(2010年1月)(参考文献。3)。本指南强调考虑安全和质量风险管理的考虑,以建立诱变杂质的水平,这些杂质有望带来可忽略的致癌风险。概述了对居住或合理期望居住在最终药物或产品中的诱变杂质评估和控制的建议,考虑到人类使用的预期条件。一般而言,FDA的指导文件并未确定合法可执行的责任。相反,指南描述了该机构对某个主题的当前思考,除非引用特定的监管或法定要求,否则应仅将其视为建议。