N-亚硝胺药物杂质是FDA关注的重点,尤其是由药物本身形成的亚硝胺杂质,称为N-亚硝胺药物相关杂质或NDSRI。杂质可以在药物生命周期的任何时间形成,例如作为合成副产物、在储存过程中以及在接受治疗的患者体内产生的NDSRI。使用突变试验可以识别可能增加癌症风险的N-亚硝胺杂质;具有致突变性的N-亚硝胺被认为是致癌物质,在药物中的含量被控制在非常低的水平。因此,FDA开发能够识别致突变N-亚硝胺的测试模型非常重要。DGMT科学家与药物评估和研究中心(CDER)亚硝胺药物杂质工作组合作,使用体外细菌和人类细胞突变试验评估一系列小分子N-亚硝胺和NDSRI的致突变性和遗传毒性。此外,还使用二维 (2D) 和三维 (3D) 人类肝细胞 (HepaRG) 模型测试了八种不同的 N-亚硝胺的遗传毒性。最后,对不同的 N-亚硝胺在转基因啮齿动物中的致癌性进行了评估。这些研究的目的是开发筛选和后续检测方法,以高置信度确定 N-亚硝胺药物杂质的癌症风险。以下出版物描述了这些研究的结果:Regul Toxicol Pharm 和 Arch Toxicol。
仅供研究使用。不可用于诊断程序。© 2022 Thermo Fisher Scientific Inc. 保留所有权利。MiraMist 是 Burgener 的商标。SPEX CertiPrep 是 SPEX CertiPrep Group LLC 的商标。所有其他商标均为 Thermo Fisher Scientific 及其子公司的财产。此信息作为 Thermo Fisher Scientific 产品功能的示例提供。它不旨在鼓励以任何可能侵犯他人知识产权的方式使用这些产品。规格、条款和定价可能会发生变化。并非所有产品在所有国家/地区都有售。请咨询您当地的销售代表了解详情。AN000243-EN 0422C
107饮食补充剂Pamela Mason Pharmaceutical Press 108有机化学Garry Fransis Mc Graw Hill 109流体床处理器手册Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro Niro and Drug Discovery
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。
摘要:与成熟的半导体技术类似,使用更高质量的试剂合成卤化物钙钛矿材料可提高光电性能。在本研究中,我们选择了五种不同纯度的商业 PbI 2 源,并采用三种不同的钙钛矿组成-器件架构组合制造了太阳能电池。在所有情况下,我们都观察到在不同的加工配方和架构中,器件性能与 PbI 2 试剂源具有相似的相关性。然后,我们采用了一套分析表征技术来确定 PbI 2 试剂中影响器件性能趋势的杂质的身份和浓度。观察到了许多杂质;有些仍未鉴定,但可以单列乙酸盐 (OAc) 和钾 (K) 是 PbI 2 中浓度变化最大的关键物质。乙酸盐被确定为有害杂质,而 K 杂质可能是有益的,正如先前关于碱金属阳离子添加剂的文献所表明的那样。简单的水相重结晶成功降低了许多杂质的浓度,并且根据新的杂质分布解释了由重结晶 PbI 2 试剂制造的器件的结果。这项工作极大地丰富了研究人员应该了解的钙钛矿试剂中已知杂质的列表,我们提出改进的钙钛矿前体的纯化方法将进一步有利于器件性能、运行间和批次间重现性。关键词:PbI2 试剂源、碘化铅前体杂质、卤化物钙钛矿;器件性能、SIMS 数据 ■ 简介
摘要高级钢的参数受到包括化学成分和生产技术在内的因素组合的影响。杂质含量也是高级钢质质量的关键决定因素。夹杂物也可能发挥重要作用,但要遵守其类型和形状。夹杂物可能通过抑制微裂缝的发展来增加钢的强度。分析的材料是中碳结构钢的一年级。该研究是在140吨电炉的工业工厂中产生的6次热量进行的。鉴于五种热处理选择,比较了实验变体。提出了结果,以说明旋转弯曲期间疲劳强度系数,杂质之间的直径和间距之间的相关性。确定了高级钢与杂质直径的疲劳强度与硬度与杂质之间的间距之间的关系。所提出的方程式有助于实践的现有知识基础,其杂质的影响以及各种直径的杂质和非金属包容性之间的间距对疲劳强度。
正如我们在第1.1.1节中讨论的那样,大多数集成电路都是用硅制造的。因此,我们的重点是制造硅设备。为制造设备,硅必须以结晶形式为没有任何缺陷。它必须非常纯净。仅允许PPB的命令(仅零件十亿)的杂质。 2.1.1硅硅的纯化在自然界中大量可用于Sio 2(Sand)的形式,该形式形成了地壳的20%。 冶金级硅(MGS)是通过在碳弧炉中还原(以岩石形式可用的Sio 2的晶体形式)获得的。 MGS电子级硅(EGS)的是通过蒸馏过程获得的。 例如,本质上是多晶。 它由1 ppb的杂质组成。 (每10亿或10 9硅原子1不良杂质)。 2.1.2晶体生长仅允许PPB的命令(仅零件十亿)的杂质。2.1.1硅硅的纯化在自然界中大量可用于Sio 2(Sand)的形式,该形式形成了地壳的20%。冶金级硅(MGS)是通过在碳弧炉中还原(以岩石形式可用的Sio 2的晶体形式)获得的。是通过蒸馏过程获得的。例如,本质上是多晶。它由1 ppb的杂质组成。(每10亿或10 9硅原子1不良杂质)。2.1.2晶体生长
点缺陷:(零维缺陷)是由于原子在结晶过程中偏离正常位置、存在杂质原子或原子处于错误位置而产生的。这些缺陷很小,其影响范围向所有方向扩展,但仅限于小有序(两个或三个原子级)的特定区域。空位:原子从其原始晶格位置缺失。通常由于结晶过程中的热振动而产生,并受外部参数的影响。空位可能是单个、两个或更多个,具体取决于晶体类型。对于大多数晶体,为了产生一个空位,需要 1.1 eV 的热能。间隙:当相同或不同类型的原子占据规则原子位置之间的空隙时,就会出现这种缺陷。杂质原子:不属于母晶格(原始晶体)的原子。取代缺陷:当杂质原子取代或替代母原子时,就会出现这种缺陷。例如:黄铜中的锌是铜晶格中的替代原子 间隙杂质:当尺寸较小的杂质原子位于常规原子位置之间时,就会产生这种缺陷。例如:当将五价和三价杂质添加到纯 Si 或 Ge 中时,我们会得到 n 型和 P 型半导体。
药理学化合物中的有机,无机和残留溶剂杂质来源已被国际协调理事会分为类别。药物部门面临调节障碍,因为有机污染物可能是基因毒素。检测和方法开发也验证了teriflunomide色谱分离过程中产生的有机污染物的验证是这项工作的主要目标。使用二极管阵列检测器和反相高性能液相色谱进行杂质研究。在25°C的色谱柱温度下,通过梯度分离成功实现了C18 ymc-pack ODS柱。用作流动相,乙腈和0.015 M磷酸钾磷酸钾,pH为3.5。采用了210 nm检测器波长和1.0 mL/分钟的流量。使用经过验证的分析方法成功分离了六种相关的杂质,分辨率和保留时间在35分钟以下。teriflunomide,Teriflunomide阶段1和杂质D已建立了分析技术,范围分别为0.066–3.262、0.035–1.880和0.025-1.255 µg/ml。teriflunomide,Teriflunomide阶段1和杂质-D具有不同的检测限制,定量值的限制为0.0037和0.0096、0.0016和0.0016和0.0051,以及0.0011和0.0033 µg/ml。确认的分析方法可以有效地识别任何制造过程杂质。
1。最高的电导率(理想情况下为零)。2。电阻的最小可能温度系数(理想情况下为零)。3。高熔点。4。高机械强度。5。高延展性,因此可以轻松地以电线的形式绘制。6。高腐蚀性(无氧化)。 7。 焊接能力,因此可以轻松焊接以加入导体。 8。 低成本。 9。 长寿或耐用。 10。 高灵活性。 上述所需属性随使用材料的目的而变化。 金属或非金属的任何杂质都会增加金属的电阻率。 即使是低电阻率的杂质也会增加金属的电阻率。 其原因是,添加轻微的杂质在晶格中产生了缺陷,从而干扰了电子通过金属的流动。 下表中给出了一些低电阻率或高电导率材料及其具有电阻系数的电阻率: -高腐蚀性(无氧化)。7。焊接能力,因此可以轻松焊接以加入导体。8。低成本。9。长寿或耐用。10。高灵活性。上述所需属性随使用材料的目的而变化。金属或非金属的任何杂质都会增加金属的电阻率。即使是低电阻率的杂质也会增加金属的电阻率。其原因是,添加轻微的杂质在晶格中产生了缺陷,从而干扰了电子通过金属的流动。下表中给出了一些低电阻率或高电导率材料及其具有电阻系数的电阻率: -