炭疽菌是一种革兰氏阳性细菌,可能导致包括人类在内的野生和家庭伴侣之间的危害威胁性疾病(1)。B.炭疽病可以形成孢子,在不利条件下实现长期生存。先前已经报道了从储存到60年的土壤中分离植物的息肉。 由于其致病性特征,炭疽芽孢杆菌被认为是用于进行生物果或生物恐怖主义的最严重和威胁性的药物之一(3,4)。 In our previous study, 3 of 24 soil samples collect- ed from a World War II (WWII) site in northeastern China (Appendix Figure 1; https://wwwnc.cdc.gov/ EID/article/30/12/23-1520-App1.pdf) tested positive for B. anthracis using RPA/CRISPR-Cas12a, real-time PCR, and metagenomic analysis ( 5 )。 值得注意的是,这些阳性样品是从731单元(45°36′55.940'n,126°38′33.738'e)的位点获得的,这是日本军队经营的前bacteria实验室(5)。 我们从距离第二次世界大战实验室遗迹的0.5 km,3 km和5 km内的12个收集地点中收集了24个样品(附录图2)。 但是,我们在新收集的样品中没有检测到炭疽芽孢杆菌的痕迹,这意味着我们以前发现的阳性样品可能不是源自局部自然来源。 Using polymyxin B-lysozyme-EDTA-thallous ac- etate agar and API 50CHB-API 50CH biochemical re- agents (BioMérieux, https://www.biomerieux.com), we successfully isolated and identified a B. anthracis strain (named BA20200413YY) from one of the soil samples. 形态学,溶血和生化先前已经报道了从储存到60年的土壤中分离植物的息肉。由于其致病性特征,炭疽芽孢杆菌被认为是用于进行生物果或生物恐怖主义的最严重和威胁性的药物之一(3,4)。In our previous study, 3 of 24 soil samples collect- ed from a World War II (WWII) site in northeastern China (Appendix Figure 1; https://wwwnc.cdc.gov/ EID/article/30/12/23-1520-App1.pdf) tested positive for B. anthracis using RPA/CRISPR-Cas12a, real-time PCR, and metagenomic analysis ( 5 )。值得注意的是,这些阳性样品是从731单元(45°36′55.940'n,126°38′33.738'e)的位点获得的,这是日本军队经营的前bacteria实验室(5)。我们从距离第二次世界大战实验室遗迹的0.5 km,3 km和5 km内的12个收集地点中收集了24个样品(附录图2)。但是,我们在新收集的样品中没有检测到炭疽芽孢杆菌的痕迹,这意味着我们以前发现的阳性样品可能不是源自局部自然来源。Using polymyxin B-lysozyme-EDTA-thallous ac- etate agar and API 50CHB-API 50CH biochemical re- agents (BioMérieux, https://www.biomerieux.com), we successfully isolated and identified a B. anthracis strain (named BA20200413YY) from one of the soil samples.形态学,溶血和生化
电穿孔已成为一种高效的方法,可以快速,熟练地将外源质粒DNA引入各种细胞类型,尤其是那些缺乏自然能力的细胞类型。本协议文章描述了一种使用电穿孔转化农杆菌Rhizogenes K599的方法。这种方法虽然需要纯化的质粒DNA,有能力的细菌以及标准的电穿孔设备,例如基因脉冲控制器和比色杯,但就转化效率和速度而言具有显着优势。本文详细介绍的协议不仅概述了程序步骤,还强调了在A. rhizogenes K599研究的背景下有效转化的重要性。此外,它提供了有关所达到的转化率的见解,从而为研究人员提供了评估该方法疗效的基准。通过阐明设备要求和程序上的细微差别,该协议旨在使研究人员能够采用电穿孔作为A. rhizogenes k599遗传操作的可靠工具,从而促进各种生物技术应用中的进步。
由于广泛使用全基因组测序(WGS),对引起人类和动物结核病的细菌毒剂的限制性多样性的传统观点进行了修订。除了分枝杆菌CANETTII(代表东非东部结核杆菌的特殊,非克隆,进化的分支谱系)外,在过去的十年中,已经在AFRICA中鉴定出了几种以前未知的结核分枝杆菌谱的谱系。M.结核病复杂谱系7(L7)在非洲的角和非洲大湖地区的L8中发现(1,2)。Afri-Canum L9仅在吉布提和索马里发现。相比之下,其他2个主要的非洲主要菌落 - 相关的谱系对结核病Burden,L5和L6产生了基本贡献,主要是在西非的(3)。在芽孢杆菌的进化史上,东非和西非之间的途径尚不清楚。我们描述了与中非相关的新发现的L6和L9的姐妹谱系,并讨论了确定相关非洲谱系L5,L6和L9的进化历史的含义。我们基于公开数据的研究,因此不批准道德批准。
。CC-BY 4.0国际许可证。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月25日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.30.635633 doi:biorxiv preprint
免疫原性细胞死亡(ICD)在临床上具有相关性,因为通过ICD杀死恶性细胞的细胞毒素会引起抗癌免疫反应,从而延长了化学疗法的影响,而不是治疗中断。ICD的特征是一系列刻板的变化,增加了垂死细胞的免疫原性:钙网蛋白在细胞表面的暴露,ATP的释放和高迁移率组Box 1蛋白以及I型Interferon反应。在这里,我们研究了抑制肿瘤激酶,间变性淋巴瘤激酶(ALK)的抑制可能性,可能会触发ICD在染色体易位因染色体易位而激活ALK的变性大细胞淋巴瘤(ALCL)中。多种证据辩称,有利于克唑替尼和塞替尼在ALK依赖性ALCL中的特异性ICD诱导作用:(i)它们在药理学相关的低浓度上诱导ICD Stigmata; (ii)可以通过ALK敲低模仿其ICD诱导效应; (iii)在支配碱性突变体的背景下失去了效果; (iv)通过抑制ALK下游运行的信号转导途径来模仿ICD诱导效应。当将经CERITIN的鼠类碱性ALCL细胞接种到免疫能力合成小鼠的左侧时,它们诱导了一种免疫反应,从而减慢了植入在右孔中的活Alcl细胞的生长。尽管Ceritinib诱导淋巴瘤小鼠的肿瘤的短暂收缩,无论其免疫能力如何,在免疫降低效率的背景下,复发频率更高,从而降低了Ceritinib对生存率的影响大约50%。完全治愈仅发生在免疫能力的小鼠中,并赋予了与表达同一碱性淋巴瘤的保护,但不与另一种无关的淋巴瘤进行保护。此外,PD-1阻滞的免疫疗法往往会提高治愈率。总的来说,这些结果支持了以下论点,即特异性ALK抑制作用通过诱导ICD诱导ALK-阳性ALCL刺激免疫系统。
对于大多数生物体,DNA采用了负超螺旋的状态[( - )SC],该状态已知促进DNA螺旋的疾病,从而促进与关键细胞过程有关的分子机械获得遗传信息的获取(1)。相比之下,在DNA复制和转录机械之前生成正涂层[(+)SC](2)。在没有放松(+)SC的拓扑异构酶的情况下,这些基本过程受到阻碍(3)。IIA型DNA拓扑异构酶(topoiia)是进化保守的大分子,通过通过短暂的双链断裂,使DNA弛豫,衰减和脱节来调节DNA拓扑,从而调节DNA拓扑。拓扑素酶是用于传染病和癌症治疗的治疗剂的主要靶标(5,6)。
广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
shiga毒素产生的大肠杆菌(STEC)感染导致疾病症状的无症状运输或发育,这可能会使次要后遗症衰弱。STEC感染已与消耗粪便污染的食物和水有关,尤其是在与受感染动物接触后的手到口水传播。农业食品链中的动物在STEC传播中起着重要作用,并且需要采取有效的控制措施,以防止农场分叉传播这些人类病原体。因此,几项研究旨在在动物宿主的背景下理解STEC生态,并利用洞察力来开发适当的控制和诊断措施。感染/疾病的动物模型也被用作人类疾病的替代物,以更好地了解STEC发病机理。本期特刊的目的是解决:i。动物-Stec相互作用; ii。STEC定植和/或致病性的动物模型; iii。动物中的控制和/或诊断; iv。替代动物模型研究文章,评论文章和与这些主题相关的简短沟通。