摘要。海上运输在全球贸易中发挥着关键作用,但它面临着腐蚀带来的挑战,腐蚀会使船舶的金属表面退化,从而导致潜在的安全隐患和财务负担。传统的腐蚀检测方法(如目视检查)效率低、耗时且往往主观。本文提出了一种基于深度学习的解决方案,利用卷积神经网络 (CNN) 来检测和评估船舶表面的腐蚀。我们提出的解决方案不仅可以自动化检测过程,还可以提高准确性,确保及早发现和有效管理腐蚀。通过严格的实验,该模型表现出很高的准确性,大大改善了海运业的腐蚀检测过程。
b"作者姓名:Divyanshu Tak 1,2, ;Biniam A. Garomsa 1,2 ;Tafadzwa L. Chaunzwa 1,2,10 ;Anna Zapaishchykova 1,2, ;Juan Carlos Climent Pardo 1,2 ;Zezhong Ye 1,2, ;John Zielke 1,2 ;Yashwanth Ravipati 1,2 ;Sri Vajapeyam 4 ;Ceilidh Smith 2 ;Kevin X.Liu 4 ;Pratiti Bandopadhayay 4,5 ;Sabine Mueller 9 ;黄蒙德4,5,11; Tina Y. Poussaint 4,5;Benjamin H. Kann 1,2,5 * 作者隶属关系:1. 哈佛医学院麻省总医院医学人工智能 (AIM) 项目,美国马萨诸塞州波士顿 2. 哈佛医学院丹娜—法伯癌症研究所和布莱根妇女医院放射肿瘤学系,美国马萨诸塞州波士顿 3. 马斯特里赫特大学 CARIM & GROW 放射学和核医学系,荷兰马斯特里赫特 4. 波士顿儿童医院,美国马萨诸塞州波士顿 5. 丹娜—法伯癌症研究所,美国马萨诸塞州波士顿 6. 密歇根州立大学,美国密歇根州东兰辛 7. 费城儿童医院,美国费城 8. 宾夕法尼亚大学,美国宾夕法尼亚州 9. 加利福尼亚大学神经内科、神经外科和儿科系,美国旧金山 10. 纪念斯隆凯特琳癌症中心中心,纽约,美国 11. 哈佛医学院布莱根妇女医院放射科,马萨诸塞州波士顿。 * 通讯作者 通讯地址:Benjamin H. Kann,医学博士 医学人工智能 (AIM) 项目,麻省总医院布莱根,哈佛医学院,221 Longwood Avenue,Ste 442,波士顿,马萨诸塞州 02115,美国 电子邮件:Benjamin_Kann@dfci.harvard.edu 摘要 应用于脑磁共振成像 (MRI) 的人工智能 (AI) 有可能改善疾病的诊断和管理,但需要具有可泛化知识的算法,以便在各种临床场景中表现良好。到目前为止,该领域受到有限的训练数据和特定于任务的模型的限制,这些模型不能很好地应用于患者群体和医疗任务。基础模型通过利用自我监督学习、预训练和有针对性的适应,提出了一个有前途的范例来克服这些限制。在这里,我们介绍了脑成像自适应核心 (BrainIAC),这是一种新颖的基础模型,旨在从未标记的脑 MRI 数据中学习广义表示,并作为各种下游应用适应的核心基础。我们在 48,519 个脑 MRI 上进行了广泛任务的训练和验证,证明 BrainIAC 优于局部监督训练和其他预训练模型,特别是在低数据设置和高难度任务中,允许在其他不可行的情况下应用。
a 暨南大学第一附属医院普通外科,广州,中国 b 暨南大学医学院生物活性分子与药物活性评价国家重点实验室、肿瘤分子生物学教育部重点实验室、精准肿瘤医学与病理研究所,广州,中国;暨南大学珠海研究所,中国珠海 c 暨南大学附属第一医院胸外科,中国广州 d 荷兰格罗宁根大学医学中心格罗宁根大学血液科 e 汕头大学医学院,中国汕头 f 暨南大学附属第一医院泌尿外科,中国广州 g 上海市浦东新区公利医院病理科,中国上海 h 长治医学院和平医院病理科,中国长治 i 费城骨科医学院生物医学系,美国宾夕法尼亚州费城 j 汕头大学医学院第二附属医院甲状腺、乳腺和疝外科,中国汕头 k 德克萨斯大学 MD 安德森癌症中心急诊医学科,美国德克萨斯州休斯顿 l 德克萨斯大学 MD 安德森癌症中心内分泌肿瘤和激素紊乱科,美国德克萨斯州休斯顿 m 公利医院病理科上海市浦东新区生物活性分子与药物活性评价国家重点实验室、肿瘤分子生物学教育部重点实验室、暨南大学医学院精准肿瘤医学与病理研究所,广州,暨南大学附属第一医院普通外科,广州,汕头大学医学院第二附属医院甲状腺、乳腺和疝外科,汕头,
https://orcid.org/0000-0001-9954-9287 奥地利维也纳高等研究院 frankus@ihs.ac.at 中小企业实施人工智能的障碍:试点研究 被编辑 Ewa Ziemba 接受 | 收到日期:2024 年 5 月 23 日 | 修订日期:2024 年 7 月 15 日;2024 年 7 月 28 日;2024 年 8 月 24 日 | 接受日期:2024 年 8 月 28 日 | 出版日期:2024 年 9 月 16 日。© 2024 作者。本文根据 Creative Commons 署名-非商业性使用 4.0 许可证 (https://creativecommons.org/licenses/by-nc/4.0/) 授权。 摘要 目的/宗旨 – 这项初步研究探讨了阻碍中小型企业 (SME) 有效实施人工智能 (AI) 的主要障碍。通过彻底了解这些障碍,组织可以制定定制的策略和干预措施来克服这些障碍,从而促进更顺利、更成功地采用 AI。本文的主要目标是帮助组织了解采用 AI 的障碍,以制定定制的策略和干预措施来克服这些挑战,从而更高效、更成功地整合 AI。通过严格审查现实世界的经验和看法,本文试图阐明阻碍有效部署 AI 解决方案的多方面挑战。设计/方法/方法——该研究根据对捷克共和国和奥地利 22 位行业专家的采访数据,确定了 AI 实施的四个主要障碍。
1医学与药学学院微生物,血液学和免疫学系,DSchang大学,P.O。Box 96, Dschang, Cameroon 2 Laboratory of Tropical and Emerging Infectious Diseases, Buea, Cameroon 3 Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium 4 Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, P.O.Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O. BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O.BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国
当今更广泛的环境(LIBS)被认为是许多当前和有前途的应用,例如运输电气化或可再生能源存储的电池技术。尽管Libs的表现良好,但由于锂(LI)的天然丰富性相对较低,并且在全球范围内的地理上不平坦,因此他们有望面临资源供应链挑战。转向完全非LI可充电电池可能会打开克服此类挑战的有效方式。可充电镁电池(RMB)构成了这种有前途的,替代的非LI储能系统的范式例子,此前是全球研究团队的开创性效果和突破之后。在可充电电池中使用金属MG阳极的潜力在能量密度,成本,安全性,可持续性和降低材料供应风险方面具有重要优势,这是由于MG的自然丰富性而引起的。尽管RMB文献取得了重要进展,但所有报告的研究仍然仅限于实验室量表和硬币核算构型,在这些研究中,RMB的许多实际和工业方面都被忽略了。在这种情况下,小袋单元格配置是优化组件的更好平台,它代表了迈向应用程序电池电池设计的关键步骤。在本文中,我们介绍了最有前途的材料和细胞成分,用于开发具有竞争性能的高TRL RMB。突出显示了可能的晚期RMB化学的可行性和巨大的潜在潜力。概述了可以达到最高160 W H Kg 1的能量密度的成熟RMB的路线图。
摘要:尚无有效的治疗方法,可用于最近增加的多形胶质母细胞瘤(GBM)的发生率,这是最常见的原发性脑肿瘤,其特征是高度侵入性和遗传异质性。目前,DNA烷基化剂替莫唑胺(TMZ)是标准化疗。尽管如此,由于与DNA损伤修复,表观遗传改变,细胞药物EF漏水,凋亡 - 嗜optopopophapy和过度活跃蛋白质蛋白质相关的许多分子机制,TMZ耐药性是GBM治疗中的一个主要问题。NEDD8激活酶(NAE)的低分子量抑制剂,例如MLN4924,减轻了蛋白质NEDDYLATY,并具有有希望的低毒性抗癌药。我们研究的目的是在我们的耐TMZ GBM细胞系中与TMZ和MLN4924进行有效的组合处理,并研究这些组合处理对不同蛋白质表达的影响,例如O 6-甲基瓜氨酸甲基转移酶(MGMT)和p53。联合处理成功地降低了细胞活力,并使TMZ抗性细胞敏感到TMZ,预示了GBM的新治疗策略。
耐药性仍然是靶向治疗剂临床衰竭的主要驱动因素。当前的肿瘤学精密医学方法依赖于靶向已知的获得的抗性突变,例如NSCLC中的EGFR T790M或ALK/ROS突变,其旨在克服或防止耐药性的2 nd和3 Rd代分子。这些下一代有针对性的治疗方法具有越来越长,复杂的药物发育时间表和繁重的毒性(例如野生型受体靶向)或药物相互作用(DDI)。毒性限制了不同靶向治疗剂的耐受性,合规性和组合性。基于RNA的免疫疗法方法为下一代小分子靶向治疗方法提供了一种越来越有吸引力的替代方法:(1)基于RNA的方法仅需要已知的获得性抗药性序列,(2)药物开发时间表,成本和复杂性可以有意义地凝结,(3)与同一候选候选者可以针对靶向多重获得的抗性突变。rbi-1000是一种使用新型的自我复制RNA(SRRNA)的候选者,以产生针对ER+乳腺癌(ER+ BC)在响应内分泌治疗中发展的可获得耐药突变的稳健免疫力。rbi-1000包括雌激素受体配体结合结构域内的靶向突变,以及以PI3K激酶结构域中激活突变的形式旁路突变或HER2/HER3的扩增。在人的HLA-转基因小鼠中也证实了T细胞针对获得的突变的启动。启动。在这里,我们证明了该srRNA封装在脂质纳米颗粒素中的多功能CD4和CD8 T细胞中,导致肿瘤生长抑制,并改善了表达靶向获得的耐药性突变的小鼠模型。免疫细胞介导的消除表达获得的耐药性突变的克隆被预测会延长对ER+BC的内分泌控制,以类似的方式对小分子或靶向疗法的小分子或单克隆抗体的靶向疗法,但由于精确的免疫学靶标和无DDI而引起的更有利的剂量和不利的剂量和不良事件。
摘要 背景 复发性和晚期宫颈癌 (CC) 的预后仍然很差,因此需要新型疗法来治疗。尽管针对程序性细胞死亡蛋白 1 (PD-1) 通路的疗法已被批准用于治疗 CC,但很大一部分患者表现出先天性耐药性。联合使用检查点抑制剂可以增强其疗效。方法 从 CC 患者获取血液样本、肿瘤标本和瘤周 (PT) 组织。通过流式细胞术分析 CC 标本中 CD8+ T 细胞的抑制性受体表达和表型分析。通过免疫组织化学和免疫荧光测量肿瘤细胞表达的 CD96 配体。通过基于 CC 标本单细胞培养的离体治疗试验评估对派姆单抗的敏感性。使用离体治疗试验和人乳头瘤病毒阳性 TC-1 异种移植小鼠模型在体内探索 PD-1 和/或 CD96 阻断的疗效。结果我们发现对 PD-1 阻断不敏感的 CC 患者的 CD8+ 肿瘤浸润淋巴细胞 (TIL) 上 CD96 表达升高。这些表达 CD96 的 CD8+ TIL 通常共表达 PD-1。来自 scRNA-seq 数据的 CD96+CD8+/CD96−CD8+ T 细胞基因特征的比例与宫颈鳞状细胞癌和宫颈腺癌患者的不良生存率显着相关。与血液和 PT 组织相比,与 CD96 竞争的共刺激受体 CD226 在肿瘤中下调。CD96 和具有 Ig 和 ITIM 结构域的 T 细胞免疫受体 (TIGIT) 在肿瘤内 CD8+ T 细胞上上调。CD226/CD96/TIGIT 信号配体在 CC 肿瘤组织中广泛表达。表型分析显示,PD-1+CD96+CD8+ TIL 表现出终末衰竭效应表型,T 细胞免疫球蛋白黏蛋白受体 3 (TIM-3) 和颗粒酶 B (GZMB) 水平高,促炎细胞因子和细胞毒性分子水平极低。PD-1+CD96 细胞表现出前体衰竭表型,TCF-1 阳性。PD-1 阻断后,CD8+ TIL 进一步上调 CD96。CD96 阻断治疗显著增强了 PD-1 阻断,从而抑制肿瘤生长,并改善小鼠和 CC 标本模型中 CD8+ TIL 的功能。