南美安第斯山脉。它们很容易耕种,并且是林业和农业系统的重要组成部分,通常适用于小型农民。他们提供各种各样的木材产品(包括工业圆木和杆子,纸浆和纸张,重建的木板,胶合板,贴面,锯木材,包装板,托盘和家具),非木材产品(饲料,燃料材料)以及服务(避难所,遮阳,遮阳,遮阳和蛋白质,水,水,水,锅,cr,cr,livest and livest and livest and dnwernings and dwerning)。杨树和柳树在植物修复中起重要作用(即占用重金属以净化污染的土壤),对脆弱的生态系统的康复(包括打击荒漠化)和森林景观的体现。他们经常与农业,园艺,葡萄栽培和凋亡融合在一起。由于它们的快速生长,它们对碳隔离有效。他们提供就业oppor-
染色体结构:Kim等人(2020年)报告了Populus tremula var中染色体结构的相似性。Davidiana,Populus alba及其杂种通过鱼核型分析揭示。韩国阿斯彭的核型(P. tremula var.Davidiana),银杨(P. alba)及其两个杂种Suwon Aspen(P. tremula var.glandulosa)和Hyun Aspen(P. alba×P。tremula var。glandulsa)。所有物种的染色体组成与2n = 38。韩国阿斯彭,银杨,Suwon Aspen和Hyun Aspen的核型配方分别为28m + 6SM + 4ST(2SAT),26M + 10SM(2SAT) + 2ST + 2ST,26M + 12SM(2SAT)和28m + 10sm + 10sm(2SAT)。这四个物种有一对45s rDNA位点,一对5S rDNA位点与鱼核型共有。
林木育种所经历的浪潮在杨树育种方面尤为明显。 20 世纪 50 年代,为了满足木材需求,对速生树种的需求激增。然而,这一联盟随着 20 世纪 70 年代中期帕佩尔协会的解散而瓦解。十年后,在不再用于粮食生产的农业用地上,开始采用短轮伐期方式生产木材,掀起了一股新浪潮。然而,到了 20 世纪 90 年代中期,这种趋势又开始减弱。随着对短轮伐期人工林木材作为可再生能源原料的需求,从 2008 年开始德国的杨树育种经历了复兴。短期内应提供旺盛的杨树无性系和后代。之前已中止的育种计划花费巨大,但又重新启动了。作为主要由联邦食品和农业部 (BMEL) 通过可再生资源机构资助的几个项目的一部分。在德国国家研究委员会 (FNR) 资助的项目中(包括 FastWOOD),进行了新的杂交,并对其后代和从中选择的克隆进行了测试,以便在“测试”类别中提供繁殖材料。不到十年,随着对短轮伐期种植园的支持停止,育种也再次停止。与此同时,政客们一直依赖沼气厂和原料玉米。短轮伐期种植园的生态优势尚未得到充分发挥。尽管近年来的灾害造成了大片裸露区域,但杨树在林业中的重要性仍然不高。
5 浙江农林大学林业与生物技术学院,亚热带森林培育国家重点实验室,杭州 311300 * 通讯作者。电子邮件:mucherow@ornl.gov;chenj@ornl.gov;yangx@ornl.gov † 这些作者对本文贡献相同 注意:本稿件由 UT-Battelle, LLC 根据与美国能源部签订的合同号 DE-AC05-00OR22725 撰写。美国政府保留;出版商在接受文章发表时,承认美国政府保留非排他性、已付费、不可撤销的全球许可,可以为美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的成果。
森林是巨大陆地生态系统和水生生物多样性的潜在栖息地,在生态保护和气候调节中发挥着重要作用。人类对森林的压力导致森林消失、破碎化和退化。在气候变化制度下,可持续的森林保护方法的要求是重中之重。在林木中,杨树 (Populus L.) 在全球林业中引起了关注,因为它是改善城市景观质量和数量的有前途的材料。这些植物提供的木材可用作造纸业的原材料和潜在的生物燃料来源。然而,一些生物胁迫,如害虫和病原体的侵袭,严重影响杨树的生产和生产力。由于杨树的生命周期长,缺乏具有抗性基因的合适供体,通过传统的树木育种方法对杨树的改良受到限制。由于杨树具有高效的遗传转化能力,它已被用作研究基因功能的模型植物。本综述将全面概述杨树受到的害虫和病原体的侵袭,重点介绍其感染机制、传播途径和控制策略。此外,还将研究最广泛使用的遗传转化方法(基因枪介导、农杆菌介导、原生质体转化、micro-RNA 介导和 micro-RNA 成簇的规律间隔短回文重复序列 (CRISPR) 相关 (CRISPR-Cas) 系统方法和 RNA 干扰),以提高杨树对害虫和病原体的耐受性。此外,还将深入探讨分子生物学工具的前景、挑战和最新进展,以及它们在遗传转化以提高杨树抗虫害能力的安全应用。最后,讨论了通过各种基因工程技术开发的抗性转基因杨树的再生。
摘要 美国科学家成功利用新基因工程(新基因组技术,NGT)将杨树的幼树期从 7 至 10 年大大缩短至仅几个月,从而实现提前开花。结果表明,只需进行少量基因改造,无需添加新基因,即可改变杨树的根本物种特异性特征。与一年生耕地植物类似,理论上,这使得可以在短时间内杂交和选择 NGT 杨树,从而大大加快其释放和销售。然而,如果杨树被释放或逃逸到环境中,这种特性可能会导致不受控制的蔓延,对受保护的杨树物种的保护产生巨大的后续影响。例如,在环境中蔓延的 NGT 杨树可能会取代濒危物种红色名录上的黑杨树。此外,复杂的生态系统可能会受到影响或破坏,因为杨树与大量物种相互作用,尤其是昆虫,包括受保护的蝴蝶和甲虫物种。
目前,CRISPR/Cas9 的使用是植物(包括生物量作物杨树)精确基因组工程的首选方法。在杨树中传递 CRISPR/Cas9 及其成分的最常用方法是通过农杆菌介导的转化,除了所需的基因编辑事件外,还会导致稳定的 T-DNA 整合。在这里,我们探索了通过 DNA 包被的微粒轰击将基因编辑试剂传递到模型树 Populus tremula x P. alba 中,以评估其开发无转基因、基因编辑树的潜力,以及其在特定靶位整合供体 DNA 的潜力。使用优化的转化方法,有利于再生暂时表达所传递供体 DNA 上基因的植物,我们再生了不含 Cas9 和抗生素抗性编码转基因的基因编辑植物。此外,我们报告了供体 DNA 片段在 Cas9 诱导的双链断裂处频繁整合,为靶向基因插入提供了机会。
摘要 关键信息 早花系统 HSP:: AtFT 允许快速评估基于构建体 PsEND1:: barnase–barstar 的杨树基因遏制系统。转基因株系表现出花粉发育紊乱和不育。 摘要 通过花粉流从转基因或非本地植物物种向其可杂交的天然亲属进行垂直基因转移是一个主要问题。已经提出了基因遏制方法来减少甚至避免树种之间的基因流动。然而,由于代际时间长,评估树木的遗传遏制策略非常困难。在这种情况下,早期开花诱导可以更快地评估遗传遏制。虽然没有可靠的方法来诱导杨树的可育花,但最近开发了一种新的早花方法。在这项研究中,获得了含有基因构建体 PsEND1:: barnase–barstar 的早花杨树系。选择 PsEND1 启动子是因为它的早期表达模式、多功能性和产生与 barnase 基因融合的雄性不育植物的效率。 RT-PCR 证实了花朵中的 barnase 基因活性,花粉发育受到干扰,导致花朵不育。本研究开发的系统是研究森林树种基因控制的宝贵工具。
摘要 测定Cas9对靶位点的切割效率对于基因组编辑非常重要。然而,这种测定只能通过体外方法进行,因为需要纯化Cas蛋白和合成gRNA。在这里,我们开发了一种体内方法,称为植物瞬时CRISPR/Cas编辑(TCEP)来测定Cas9的切割效率。按常规方法构建农杆菌介导的植物转化CRISPR/Cas载体。利用我们建立的瞬时转化方法,Cas9蛋白和gRNA瞬时表达并形成复合物以切割其靶位,从而导致动态DNA断裂。使用qPCR定量断裂的DNA以测量Cas9的切割效率。我们利用TCEP和体外方法研究了白桦和山杨×波利纳植物中Cas9对不同靶位点的切割效率。 TCEP法测定结果与体外法一致,说明TCEP法测定切割效率可靠。另外,利用TCEP法,我们发现热处理和超声处理均能显著提高CRISPR/Cas效率。因此,TCEP法具有广泛的应用价值,不仅可用于分析CRISPR/Cas效率,还可用于确定Cas9切割中涉及的因素。
和3 0区域进行了六聚体,以生成两个较短的合成启动子,Syn3-10b-1(5 0:GTTAACTTCA)和Syn3-10B-2(3 0:GGGCCTGTGG)。将这些启动子的活性与植物中的Syn3进行了比较。syn3和syn3-10b-1在瞬态的农业固定的烟草本nipiana benthamiana叶片中特异性诱导了3天。在稳定的转基因杨树中,Syn3作为本构启动子呈现,但在叶片中的活性最高。SYN3-10B-1在水功率条件下对绿色组织的诱导比模拟对照更强。因此,包含5 0序列的Syn3序列的合成启动子赋予了组织特异性的细胞和水的诱导性转基因杨树,而3 0序列则没有。因此,我们在杨树工程工具包中添加了两个新的合成启动子:Syn3-10B-1,一种绿色组织特异性和水应力诱导的启动子,以及Syn3,Syn3,Syn3,绿色组织预定的构成构成启动子。