在经典视图中,旋转配对发生在化学键中的两个电子之间,其中粘合相互作用弥补了静电排斥的惩罚。是否可以在分子实体内两个非键值电子之间发生旋转配对是一个谜。在分子尺度上揭示了这种难以捉摸的自旋纠缠(即在两个空间隔离的旋转之间配对),这是一个长期的挑战。Clar的Goblet由Erich Clar在1972年提出,提供了一个理想的模型来验证这种不寻常的特性。在这里,我们报告了Clar的杯状的溶液相合成以及对其自旋特性的实验性阐明。磁性研究表明,两个旋转的平均距离为8.7Å,在空间上隔离,抗磁磁性在基态耦合,ΔES-T为∆ E S-T为–0.29 kcal/mol。我们的结果提供了Clar的杯状旋转纠缠的直接证据,并可能激发量子信息技术相关分子旋转的设计。
由2D材料组成的异质结构已经在电子和镁质等技术领域中开放了许多新的可能性,但是如果增加2D材料的数量和多样性,则可以实现更多。到目前为止,从在环境条件下表现出分层相的材料中提取了几十个2D晶体,完全忽略了在其他温度和压力下可能存在的大量分层材料。这项工作证明了如何通过使用氧化石墨烯作为模板材料,在室温下如何在室温下将这些结构稳定在2D Van der Waals(VDW)中。具体而言,铜和碘的环境稳定2D结构通常仅在645至675 K之间的高温下以分层形式出现。结果为生产更多异国情调阶段而建立了一个简单的途径,否则,对于环境中的实验而言,难以或不可能稳定稳定。
激活转录因子4(ATF4)是由蛋白激酶RNA样ER激酶(PERK)调节的,是一种压力诱导的转录因子,负责控制广泛的自适应基因的表达,从而使细胞能够承受压力的条件。然而,ATF4信号通路对气道再生的影响仍然鲜为人知。在这项研究中,我们使用小鼠气道上皮细胞培养模型来研究PERK/ATF4在呼吸道差异化中的作用。通过药理抑制和沉默,我们发现了PERK/ATF4在基础干细胞差异中的关键参与,从而导致分泌细胞数量减少。CHIP-SEQ分析揭示了ATF4与与成骨细胞分化和分泌细胞功能相关的基因调节元件的直接结合。我们的发现为ATF4在气道上皮分化中的作用及其潜在参与先天免疫反应和细胞适应压力的潜在参与提供了宝贵的见解。
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。
• 充分利用AI,无需工人调整设备,提高制造工序的生产效率。特点1:高速推理:开发了AI控制技术,可与FA设备控制并行进行高速推理。特点2 :环境适应:学习运转过程中的状态量,适应不断变化的加工环境。特点三:高可靠性:对推理结果的可靠性进行指标化,实现高可靠的AI控制技术。
感谢联合国教科文组织世界科学知识与技术伦理委员会(COMEST)成员编写的《关于人工智能伦理可能的标准制定文书的初步研究》,以及特设专家组成员编写的《人工智能伦理建议书》初稿,3
引言青光眼是导致失明的常见视网膜疾病,占 13%。视网膜结构发生变化,逐渐导致周边视力丧失,如果不及时治疗,最终会导致失明。青光眼目前无法治愈,但及早发现和治疗有助于防止视力丧失。由于人工诊断过程昂贵且容易出错,因此人们致力于在早期实现青光眼的自动检测 [1]。青光眼是一组与视野同时出现功能障碍有关的眼部疾病。结构变化的症状是神经视网膜边缘缓慢缩小,表示视神经轴突和星形胶质细胞退化。由于视神经的任何丧失都无法恢复,因此及早发现和治疗对于患者保留视力至关重要。青光眼主要分为两种类型:1) 原发性开角型青光眼 (POAG) 和 (ii) 闭角型青光眼 (ACG)。前者进展缓慢,有时几年内视力不会明显下降。如果早期诊断,治疗包括药物治疗。后者需要手术,因为需要切除一小部分虹膜外缘。在最新研究中,人们投入了大量精力基于计算机视觉自动诊断青光眼。青光眼分析系统的结构取决于所使用的图像提示和图像模式的类型。在用于诊断青光眼的结构图像提示中,基于视盘和视杯的提示非常重要。视盘位于聚集在视网膜中的神经节纤维附近。视杯是视盘凹陷的地方,纤维从这里通过视神经头 (ONH) 从视网膜出来。需要找到杯状和视盘结构的边界,因为它有助于评估青光眼的线索,如视盘和杯状不对称和高杯状与视盘比 (CDR),后者被描述为垂直杯状直径与垂直视盘直径之间的比率。在物理勾勒出视盘和杯状的轮廓后,通过彩色眼底图像的平面测量来评估 CDR 的值。由于手动注释每个图像的杯状和视盘的过程涉及
最近发现的铜离子诱导细胞死亡新途径“杯状凋亡”表明,这种新途径具有治疗异质性和耐药性癌症的新治疗潜力。目前,基于铜离子载体的疗法已被设计用于治疗癌症,利用铜离子作为阻止肿瘤增殖和促进细胞死亡的战略工具。然而,基于铜离子载体的疗法的局限性包括铜离子的非靶向递送、肿瘤蓄积率低和半衰期短。增强特异性的策略包括使用基于纳米技术的药物靶向细胞内杯状凋亡机制。此外,探索联合疗法的重要性怎么强调也不为过,因为它们是提高癌症治疗效果的关键策略。最近的研究报告了纳米药物的抗癌作用,这些药物可以在体外和体内诱导癌症杯状凋亡。这些以杯状凋亡为靶向的纳米药物可以利用铜离子的药代动力学特性提高递送效率,从而增强基于杯状凋亡的抗癌作用。本综述将总结铜离子与致癌作用之间的复杂关系,探讨铜稳态及其失调在癌症进展和致死率中的关键作用。此外,我们将介绍针对铜凋亡的纳米药物在癌症治疗方面的最新进展。最后,我们将讨论基于铜凋亡的纳米药物面临的挑战,以期为未来的发展方向。