Balaam Madeline KTH皇家技术学院皇家理工学院参见PNEU HAPTICS PNEU HAPAPTICS:解锁触觉提示系统用于驾驶员通讯,协作和控制(半)自主大学SehiclesFriedränderMarc Stockholm University的潜力Karlsson Hedestam Gunilla Karolinska Institute Karolinska Institutet参见Global Protect Global -IG:一种基于人群的抗体图书馆技术,可优化全球保护性疫苗的开发Volpe Govanni University of Gothenburg GothenburgGöteborgsUniversity人工智能
披露:作者对于本研究没有任何需要披露的信息。简介:半月板对于膝关节的负荷分布、减震和稳定性至关重要。半月板损伤会导致疼痛、活动受限和易患骨关节炎。虽然传统治疗方法不能恢复半月板功能,但生物制造有望生成具有仿生血管化和非血管化区域的半月板结构 1 。然而,这种模拟通常是通过软水凝胶或厚的应力屏蔽纤维实现的。熔融电写 (MEW) 通常用于为具有 µ m 级纤维的水凝胶提供长期机械稳定性 2 。熔融电纤颤 (MF) 使用类似原理,但通过使用牺牲材料,可以实现纳米级纤维 3 。本研究旨在通过融合 MEW 和 MF 来制造区域性半月板结构。 MEW 提供直接的机械稳定性,而 MF 引导胶原蛋白排列以刺激结构 ECM 元素的沉积,从而实现长期的机械稳定性。方法:使用 MEW(聚己内酯 (PCL))和 MF(PCL/PVAc,比例 = 20:1(MEW:MF))打印菱形(15、30、60 °)和盒子状结构(300 x 300 µm)。通过乙醇/PBS 洗涤溶解 PVAc,并在支架上接种人源半月板祖细胞(hMPC,密度 = 5*10 6 细胞/毫升)。进行压缩和拉伸测试(动态机械分析仪,TA Q800)。用免疫荧光可视化细胞(Dapi、肌动蛋白)和 I 型胶原蛋白引导。为了将脉管系统纳入外部区域,将血管和血管周围细胞(HUVEC:2.5*10 6 细胞/ml 和 MSC:5*10 6 细胞/ml)接种到支架的外部区域。)通过免疫荧光(CD-31 和 a-SMA)研究血管网络的形成。结果部分:MF 纤维引导 MPC(肌动蛋白 +)和 I 型胶原蛋白沉积,而 MPC 聚集在 MEW 微纤维上,I 型胶原蛋白主要沉积在这些聚集体周围(图 1A)。此外,与 MEW PCL 支架或非增强凝胶相比,MF-MEW 的汇聚为半月板结构提供了更高的压缩 E 模量,尤其是随着时间的推移(图 1B)。评估血管分区显示所有结构的总血管长度保持不变,并且与非增强凝胶相比更大(图 1C)。讨论:本研究强调了 MEW 和 MF 融合以引导细胞和 ECM 引导的潜力。MEW/MF 胶原引导可能归因于随着时间的推移更好的基质弹性。此外,本研究展示了生物打印机械能力和半月板构造的第一步,其中包括仿生血管和无血管区。意义/临床意义:这些发现与生成高度多孔但机械稳定的半月板植入物有关,这些植入物可实现胶原对齐,从而实现潜在的长期稳定机械性能。此外,这些结构可用于包括半月板血管和非血管成分的体外研究,以进一步获得半月板再生的基础知识,最终改善患者护理。参考文献:
成功候选人的统计数据和最终清单是临时的。欧盟与英国之间的贸易与合作协议允许将英国与当前的欧盟研究与创新资金计划(Horizon Europe)联系起来,但要采用协议。由于该协议尚未通过到目前为止,因此英国仍被视为与Horizon Europe的“无关”。因此,仅当相关的Horizon Europe协会协议适用于授予协议签署时,仅在与Horizon Europe关联的一个国家的申请人的成功提案才有资格资金。但是,只要他们搬到符合条件的国家的房东机构,英国东道机构的成功申请人仍然可以资助。
与COG和ADG方案中资助的人相比,在STG项目中使用了更多的几何形状,数学物理,微分方程和图理论,而离散的数学和随机过程在COG项目和数字理论中使用了更多的数学和随机过程,应用的数学和量子现场理论在ADG Projects
摘要:结构设计必须确保其在整个使用寿命期间的安全性。为确保这一点,设计师首先应了解结构在材料、截面和载荷条件下的表现。在现代飞机结构设计中,通过考虑选择性设计特性(尤其是进行分析),可以实现高精度设计以获得最高的结构效率。加强筋、纵梁或桁条是用作机身和机翼支撑构件的薄金属条。当我们考虑飞机蒙皮对施加在其上的载荷的抵抗力时,由于脆弱性,飞机蒙皮很容易变形。为了解决这个问题,我们设计了一种可以承受挠度和应力水平的加固面板。通过改变加固面板截面和蒙皮材料,飞机蒙皮可以承受变形。在当前的研究中,考虑了运输机的代表性加固面板进行评估。将使用不同材料类型的加强筋的不同横截面对加固面板进行结构分析。随着材料的变化,通过不同的横截面确定 Von-misses 应力和变形,以确定更有利于提高飞机结构强度的截面。研究包括材料特性以承受
船舶面板结构屈曲的数值预测 作者:Gonghyun Jung (V) 、T.D. Huang (V) 、Pingsha Dong (V) 、Randal M. Dull (V) 、Christopher C. Conrardy (V) 和 Nancy C. Porter (V) 摘要 Q-WELD™ 是一种基于壳元素的数值模块,可用于有效预测焊接引起的变形。通过与一系列物理测试面板进行比较,验证了 Q-WELD™ 的结果。进行特征值分析以评估每个测试面板在有和没有瞬态热拉伸时的屈曲倾向。 关键词:屈曲;瞬态热拉伸;面板结构;有限元分析;焊接顺序;Q-WELD™;焊接变形缓解;焊接变形减少。 介绍 近年来,轻型结构在军用和商用船舶中的船上应用日益增多。复杂轻型结构的屈曲变形已成为造船厂实现经济高效制造的主要障碍。高强度薄钢材料可减轻顶部重量、提高任务能力、提高性能和船舶稳定性,但会大大增加结构屈曲变形的倾向。瞬态热拉伸 (TTT) 是一种特别有前途的技术,它可以通过相对简单的过程最大限度地减少热诱导屈曲变形。在不显著降低生产率的情况下,TTT 可在制造过程中同时应用于现有焊枪,但与焊枪保持一定距离。