多光谱和/或极化成像是下一代红外摄像机不可避免的要求。1–9与单色/全球成像相比,狭窄和多光谱的成像可以提供更丰富的对象信息,从而确定对象的绝对温度,并降低相机对大气条件的敏感性。几个相邻光谱通道的组合有助于在复杂的环境中检测到埋藏的物体。5人工对象(例如金属和玻璃)通常具有与天然物体的极化特性不同的。因此,获取极化信息有可能识别某些对象,被认为是提高识别效率并减少错误警报的重要手段。2–4传统的多光谱和极化技术基于单个光谱焦平面阵列,光谱仪和/或极化器的掺入,这些光谱平面阵列,光谱仪和/或极化器通常需要高成本的机械扫描仪器和额外的空间。这些附加
1。集思广益的其他彼此排斥的状态。有很多可能性,但是有些常见的答案可能是打开或关闭的轻开关,一枚硬币价值5美分,10美分等,或者,如果Schrödinger在您的班上,则一只猫还活着或死了。2。拿一个垂直偏振器并透过它。将第二个偏振器在90°旋转,然后将其放在第一个偏振器的前面。垂直偏振器从水平偏振器中传出多少光?无。由于极化器的技术局限性,可能会看到一些蓝光。3。水平和垂直极化是相互排斥的吗?为什么或为什么不?他们是!如果波浪垂直振荡,它没有任何水平成分,并且所有光都被阻塞。换句话说,如果光线垂直,则绝对不是水平的。4。是垂直和对角线(45°)互斥的极化吗?您可以实验测试吗?不,他们不是。当我们将两个极化器相距45°时,一些光线会通过,证实对角线极化具有一定的垂直成分。5。除水平以外,是否有垂直状态相互排斥的两极分化状态?编号所有其他角度至少让一些灯光透过。6。您能找到一个互斥45°极化状态的状态吗?使用极化器测试您的预测。是的,-45°状态。7。我们可以通过一起浏览 +45°和-45°偏振器,并指出没有光线通过。您能想到其他彼此相互排斥的国家集合吗?任何两个垂直极化都是互斥的。如果您在类中讨论了循环极化,例如在3D电影的背景下,左手和右圆极化也是相互排斥的。圆形极化的完整讨论超出了该活动的范围。
(a)Anomala albopilosa的Elytron的反射和透射光学显微照片。(b)Anomala albopilosa的Elytron的透射光学显微照片。(c)左圆极化光板下方的Anomala albopilosa的金属绿色反射。(d)在右圆极化光板下没有反射。(E)左圆极化光板下方的金属紫色反射。(f)在右圆极化光板下没有反射。(g)左右圆形偏振板下的照片,L + R表示左右极化器的重叠。信用:下一材料(2025)。doi:10.1016/j.nxmate.2025.100516
非线性极化器使得可以测量多光子过程的极化特性,并表征材料的非线性特性。但是,现有的测量策略不是最佳的,并且精确度差。在这封信中,我们开发了一个适用于非线性Stokes-Mueller Polarimetry(SMP)的严格优化模型,以提高两种和第三个光子过程的非线性Mueller矩阵(MM)的估计精度。基于模型,我们设计的测量策略将第二次谐波发电机偏振仪的MM系数估计差异降低约58.2%,而第三谐波式极化仪的估计差异降低了78.7%。优化模型为提高非线性光学的SMP的测量精度打开了一扇门,并且可以很容易地应用于任何基于多光子的非线性偏光仪。©2024 Opti-
我们提出了一种具有极化多重照明的单次定量差异相比(DPC)方法。在我们系统的照明模块中,可编程的LED阵列分为四个象限,并覆盖了四个不同极化角度的偏振膜。我们在成像模块中的像素之前使用偏振摄像头。通过将自定义LED阵列上的偏振膜与相机中的极化器匹配,可以从单件采集图像中计算出两组不对称的照明采集图像。与相传函数结合使用,我们可以计算样品的定量相。我们介绍了设计,实现和实验图像数据,证明了我们方法获得相位分辨率目标的定量相位图像以及HELA细胞的能力。
要清洁我们的光的光学元件,最好只在必要时清洁。灰尘始终是清洁光学元件的第一步。擦拭灰尘的视线就像用砂纸清洁它。在擦除任何光学元件之前,始终用罐装空气duster或压缩和过滤空气进行灰尘。如果灰尘撒上灰尘的污渍,请记住:“如果不是脏的,请不要清洁。”尽可能避免擦拭光学元件。如果除尘没有清洁镜头或镜头的污渍,则仅使用去离子的水和轻度的洗碗皂,其较低的棉布布设计用于光学元件,以避免任何苛刻的化学物质对光学损坏。极化器,光束拆分器和准直的膜绝不能用任何类型的布或溶剂擦除,只使用空气除尘方法清洁这些类型的光学器件。当灰尘不足以彻底清洁时,可以将铝制外壳擦掉。
液晶显示屏(LCD)是平板显示器或其他电子调制的光学设备,它使用液晶与极化器结合的光调节性能。液晶不会直接发出光,而是使用背光或反射器来产生颜色或单色的图像。LCD可用于显示任意图像(如通用计算机显示)或具有低信息内容的固定图像,可以显示或隐藏,例如预设单词,数字和七个段显示器,如数字时钟。他们使用相同的基本技术,除了任意图像是由小像素的矩阵制作的,而其他显示器具有较大的元素。LCD可以根据偏振器的排列通常在(正)或OFF(负)上。例如,带有背光的字符正面LCD在背景的背景上具有黑色字母,并且字符负LCD具有黑色背景,字母的字母与背光相同。光学滤镜被添加到蓝色LCD上的白色,以使它们具有特征性的外观。
一种更准确的技术是在自定义材料中建模基于吸收的极化。在Fred文档的材料类别中,右键单击并选择创建一个新材料…。在下拉菜单下,选择“采样的双折射和/或光学活动材料”。该材料必须具有不同的实际折射率成分,并且也可能具有不同的假想折射率成分。将晶体轴定向局部 +X方向(1,0,0)。可以用N o = 1.61,n e = 1.65,k o = 100,k e = 0对吸收性二元偏振器进行建模。可以用n o = 1,n e = 1.001,k o = 100,k e = 0对线粒体X极化器进行建模。假想的折射率表示吸收。在这种情况下,极化的普通成分(垂直于晶体轴)被吸收,仅沿 +X晶体轴沿极化成分留下。
光电特性,以太阳能电池为基础的应用,[1,2]发光设备[3,4]和光电探测器。[5-7]在这些应用中,通过真空沉积的合成是一种工业可伸缩,低成本和环保方法,以制造有效的,稳定和耐用的光电设备。[8–11]此外,已经通过不同的途径[6,12-14]实现了OMHP的各向异性纳米结构,例如纳米棒,纳米线或纳米片,可以将模板和化学物质的生长(例如第一次使用)纳入模板和化学构造的模拟结构(15])或凹槽[17,18]在其内部生长OMHP,而第二种是使用溶液合成方法来控制生长,例如表面活性剂或阴离子 - 交换反应等。[12,19]这些半导体各向异性纳米结构的一个关键特征是它们的极化 - 敏感的光电子响应。[15,20–22]尽管我们当前的许多设备都利用极化器来产生偏光光,但存在几个缺点,例如生成的束的强度降低和/或它们在微观和纳米级设备中的集成,从而限制了OptoelectRonic Systems的整体效率。[15,23]
摘要 — 提出了一种双波段、正交极化线性到圆极化 (LP-to-CP) 转换器的系统设计。这类极化转换器可以在两个独立的非相邻频带中将线性极化波转换为右旋和左旋圆极化 (RHCP 和 LHCP) 波。报道的极化器由三个级联的双各向同性薄片导纳组成,由两个各向同性介电板隔开。通过阻抗边界条件研究电磁问题。设计中采用了周期性加载传输线的传输矩阵分析。建立了一个分析模型,并推导出每个薄片导纳频率响应的闭式表达式。该方法避免了使用多参数优化程序。提出了一种用于 K/Ka 波段卫星通信应用的双波段、正交极化 LP-to-CP 转换器的示例。偏振器在 K/Ka 波段的发射和接收通道上分别执行 LP 到 LHCP 和 LP 到 RHCP 的转换。该设计通过原型进行了验证。在垂直入射下,偏振器在 18-22.2 GHz(∼ 21%)和 28.7-30.4 GHz(∼ 6%)波段上的轴比 (AR) 低于 3 dB。在相同的两个波段内,总透射率高于 -1 dB。扫描角度在 ± 45 ◦ 以内时性能稳定。对于 45 ◦ 的入射角,在 17-22 GHz(∼ 25.6%)和 28.6-30 GHz(∼ 4.7%)波段上的 AR 低于 3 dB,总透射率高于 -1.2 dB。