西蒙·弗雷泽大学(Simon Fraser University),8888年,伯纳比(Burnaby),伯纳比(Burnaby),不列颠哥伦比亚省V5A 1S6,加拿大b计算机科学与工程部,阿利普尔杜尔政府工程和管理学院,西孟加拉邦736206,印度北卡罗来纳州A&t Collessect,Greesline and Models for Modeling and Internial nc Necial nc nc of 27111111, (CAMGIS),悉尼工程和信息技术教职员工,悉尼大学,悉尼大学,ULTIMO,新南威尔士州2007年,澳大利亚E部,安大略省滑铁卢分校的地理与环境管理部,加拿大N2L 3G1,F Helmholtz-Zentrum f helmholtz-Zentrum dresden-Rossendorf(Hzdr),Helmholdorf(HZDR)奥地利维也纳1030号人工智能研究(IARAI)
1米兰大学物理系,经Celoria 16,I-20133 I-20133意大利米兰; guglielmo.mastroserio@gmail.com 2defisíca,Eebe,Eebe,UniversityCitycnica de Catalunya,AV。Eduard Maristany 16, 08019 Barcelona, Spain 3 National Astro Phyica Institute, Astronomical Observatory of Brera, Via E. Bianchi 46, 23807 Merate (LC), Italy 4 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford Ox1 3rh, UK 5 Inf-Astronomical Observatory of Rome, via Frascati 33, I-00076,Monte Porzio Catone(RM),意大利6个Inf-ipps,通过Del Fosso del Cavaliere,100,00133 Rome,意大利罗马7 INAF,INAF,空间和宇宙物理Astro哲学研究所,通过U.Eduard Maristany 16, 08019 Barcelona, Spain 3 National Astro Phyica Institute, Astronomical Observatory of Brera, Via E. Bianchi 46, 23807 Merate (LC), Italy 4 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford Ox1 3rh, UK 5 Inf-Astronomical Observatory of Rome, via Frascati 33, I-00076,Monte Porzio Catone(RM),意大利6个Inf-ipps,通过Del Fosso del Cavaliere,100,00133 Rome,意大利罗马7 INAF,INAF,空间和宇宙物理Astro哲学研究所,通过U.La Malfa 153,I-90146意大利巴勒莫8号天体物理与太空科学中心(CASS),纽约大学阿布扎比大学,阿布扎比大学,邮政信箱129188,阿布扎比,阿联酋9号,捷克捷克大学天文学研究所 e-38205 La Laguna, Tenerife, Spain 11 Department de Astrofísica, Universidad de la Laguna, E-38206 La Laguna, Tenerife, Spain 12 Tor Vergata University of Rome, Via della Research Scientifica 1, i-00133 Rome, Italy Sapienza University of Rome, Piazzale Aldo Moro, 5, i-00185 Rome, Italy 14马萨诸塞州马萨诸塞州理工学院的MIT Kavli天体物理学研究所,剑桥,但02139,使用Cagliari的15 INAF-ASTRONSORALICAL OBServatory,通过Della Scienza 5,I-09047,I-09047,Selargius(CA),Selargius(CA),ITALY ITALY研究,Itliari,Sp Monserriari,Sp Monserrato 0.7 7.77.77。意大利太空科学研究所(ICE,CSIC),UAB校园,Carrer de Can s / n,08193,西班牙巴塞罗那,18学院,18860年,巴塞罗那Castelldefels(Barcelona),Spain 19号 Palermo, Italy 20 Irap, University of Toulouse, CNRS, UPS, CNES, 9, Avenue du Colonel Roche BP 44346 F-31028 Toulouse, Cedex 4, France 21 Department of Physics & Astronomy, Butler University, 4600 Sunset Avenue, Indianapolis, in 46208, uses 22 Department of Physics and Astronomy, University of Southampton, SO17 1BJ,英国收到2024年8月9日; 2024年11月15日审核员;于11月28日接受2024;出版了2025 Janogy 3
抽象的亚钠肽信号传导与广泛的生理过程有关,调节血容量和压力,心室肥大,脂肪代谢和长骨生长。在这里,我们描述了纳二尿素肽信号传导在神经克雷斯特(NC)和颅骨骨ode(CP)祖细胞形成中的完全新颖作用。在该信号通路的组合中,我们表明,纳地那二他的肽受体3(NPR3)通过通过其双重功能作为清除率和信号受体来差异地调节两个发展程序,从而起着关键作用。使用基于MO的敲低,药理抑制剂和救援测定法的组合,我们证明NPR3与鸟烯基环酸酯循环酶纳他酸肽受体1(NPR1)和Natriuretic肽(NPPA/NPPC)合作,以调节NC和CP的形成,以越来越多地构成该信号的范围。我们提出,NPR3充当清除受体,以调节NATRIARITE肽的局部浓度,以通过NPR1激活产生最佳的CGMP,并用作信号受体,通过对腺苷酸环化酶的侵害来控制cAMP的水平。这些第二个使者的细胞内调制,因此在NC和CP细胞种群的隔离中进行了体积。
摘要。心力衰竭和骨骼肌弱是糖基因论11型的主要临床特征,这是由酸A-葡萄糖苷酶缺乏引起的溶酶体储存障碍。在我们的研究中,我们已经在大鼠心脏灌注灌注系统中调查了酸A-葡萄糖苷酶是否可以从血管系统中吸收到心脏病中。将大鼠心脏用含有含磷酸盐的甘露糖含有甘露糖的含酸A-葡萄糖苷酶灌注,从Bovine睾丸纯化时,获得了3至4倍的酶活性。灌注含有含有甘露糖的6-磷酸盐识别标记物的人胎盘酸A-葡萄糖酶没有这种作用。通过免疫印迹证明了牛睾丸酸A-葡萄糖苷酶在心脏组织中的存在。免疫细胞化学为摄取心肌细胞溶酶体的外源性酶提供了证据。讨论了这些发现与I1型糖原病中酶治疗的相关性。(Pe-Diatr Res 28:344-347,1990)
摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
摘要 III 族氮化物和β 相氧化镓(β -Ga 2 O 3 )是目前研究较为深入的两种用于电力电子的宽带隙半导体材料。由于两种材料体系之间的晶格失配度相对较小,且可以利用体相 AlN、GaN 和β -Ga 2 O 3 衬底,因此已经实现了在β -Ga 2 O 3 上外延生长 III 族氮化物或反之亦然。然而,将两种材料体系集成在一起来设计功率器件仍然缺乏。本文数值研究了 AlN/β -Ga 2 O 3 异质结构,利用极化诱导掺杂来实现高性能增强型晶体管。受 AlN/β -Ga 2 O 3 界面极化效应的影响,沟道中的二维电子气浓度最高可达 8.1 × 10 19 cm −3。在沟道顶部引入p-GaN栅极,最终实现了具有可调正阈值电压的常关型AlN/β-Ga 2 O 3场效应晶体管。此外,我们插入了非故意掺杂的GaN背阻挡层以抑制漏极漏电流。最后,为了实现高性能III族氮化物/Ga 2 O 3基功率器件,我们进一步研究和分析了具有不同结构参数的器件的传输和输出特性。
图4 7 li MAS光谱0.5 mn 0.5 o 2在环境大气中存储了2个月,而(a)hahn Echo大部分显示了来自主要阴极的大部分阴极宽磁性宽片的广泛共振,其中参数磁性宽广的宽敞宽广的分辨率预测了分辨率。顶部的小边带来自空气中电极表面形成的Li 2 Co 3。可以在(b)中以单个脉冲激发(如死亡时间内的广泛成分衰减)更好地解析dimamagnetic表面物种,这表明侧带歧管的显着广度,而纯Li 2 Co 3(c)中不存在。纵向松弛时间为paragnetic Bulk Li的纵向松弛时间为4 ms,纯Li 2 CO 3为200 s,在顺磁阴影底物上形成时,较短至1 s。测量在11.8 T(500 MHz)光谱仪上进行14 kHz。改编自参考。42经许可。
来自2D纳米材料的复合材料显示出独特的高电气,热和机械性能1,2。在极端条件下,高光谱光学元件需要将其稳健性与极化旋转配对。然而,刚性纳米片具有随机的运动形状,它扰乱了具有可比波长的光子的圆形极化。在这里,我们表明,尽管纳米气门是纳米气门和部分混乱,但来自2D纳米材料的多层纳米复合材料强烈且可控制地旋转光偏振。纳米复合膜中强烈的圆二色性(CD)源自皱纹,凹槽或脊的对角线模式,导致线性双折射(LB)轴(LB)和线性二色性(LD)之间的角度偏移。逐层(LBL)组装的纳米复合材料的分层提供了从不精确的纳米片的精确工程,其光学不对称g因子为1.0,超过了典型的纳米材料的含量为1.0。复合光学元件的高热弹性可实现高达250°C的工作温度,并在光谱的近红外(NIR)部分的热发射器进行成像。将LBL工程的纳米复合材料与ACHIRAR染料相结合,导致各向异性因素接近理论极限。来自硫化钼(MOS 2),MXENE和氧化石墨烯(GO)的纳米复合极化器以及两种制造方法证明了观察到的现象的一般性。可以为坚固的光学元件进行计算设计和加性设计的大型LBL光学纳米组件。
©2023作者。本文根据创意共享4.0国际许可,允许以任何中等或格式的使用,共享,适应,分发和复制,因为您将适当的信用归功于原始作者和这些作者,并提供了与创意共享许可证的链接,并指出了IFCHANGES的链接。本文章中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果本文的创意共享许可中不包含材料,并且您的预期使用不受法定法规的允许或超过允许的使用权,则您需要直接从版权所有的人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
由于Dennard缩放1的崩溃,电子电路的时钟速度已经停滞了近二十年,这是近二十年的,这表明,通过缩小晶体管的大小,它们可以更快地操作,同时保持相同的功耗。光学计算可以克服这一障碍2,但是缺乏具有相当强大的非线性相互作用的材料,才能意识到全光开关已经排除了可扩展体系结构的制造。最近,强烈的光结合互动状态中的微腔启用了全光晶体管3,当与嵌入式有机材料一起使用时,即使在室温下也可以在室温下以次秒切换时间4的时间运行,直至单光子级5。然而,垂直腔几何形状可阻止使用片上耦合晶体管的复合电路。在这里,通过利用硅光子技术,我们在微米大小的,完全集成的高指数对比度的微腔中的环境条件下在环境条件下显示了激子 - 孔子凝结。通过耦合两个谐振器并利用种子偏振子凝结,我们证明了超快的全光晶体管作用和串联性。我们的实验发现为可扩展的,紧凑的全光积分逻辑电路开辟了道路,这些逻辑电路可以比电器快速处理两个数量级的光学信号。