心血管疾病仍然是全球成年人死亡的主要原因。1 阻塞性冠状动脉疾病是指由于动脉粥样硬化斑块的积聚而导致冠状动脉分支逐渐变窄,从而导致心肌血流减少。2 这种心肌梗塞会引发一系列病理过程,如氧化应激、炎症和纤维化,最终导致心力衰竭。对于许多患有对抗心绞痛药物或血运重建无效的进行性缺血性心力衰竭的患者来说,心脏移植有时是唯一可行的选择。3 干细胞、RNA、CRISPR、生长因子等新型疗法有望满足这一临床需求。多年来,干细胞已在临床前研究中得到广泛测试。现在,人们普遍认为旁分泌因子,而不是分化潜能,是其治疗效果的最可能原因。当代研究继续使用天然或基因重编程的干细胞来治疗各种疾病。干细胞可从成人体内的不同组织中获得,例如血液、骨髓、脂肪、骨骼肌等。4 然而,许多此类组织只能以极小的量采集。此外,获取其中一些组织(例如骨髓)需要侵入性操作。脂肪组织仍然是最丰富且最容易获取的组织之一。5
摘要 - 电子显微镜图像中轴突和髓磷脂的分割使神经科医生可以突出轴突的密度和周围髓磷脂的厚度。这些特性对于预防和预测白质疾病具有极大的兴趣。通常手动执行此任务,这是一个漫长而乏味的过程。我们提出了用于通过机器学习计算该细分的方法的更新。我们的模型基于U-NET网络的体系结构。我们的主要贡献包括在u-Net网络的编码器部分中使用转移学习,以及分割时测试时间增加。我们使用在Imagenet 2012数据集中预先训练的Se-Resnet50骨干重量。我们使用了23张图像的数据集,其中包括相应的分段掩模,这也是由于其极小的尺寸而具有挑战性的。结果表明,与最先进的表演相比,测试图像的平均精度为92%。也必须注意,可用样品是从call体的老年人中取的。与从脊髓或健康个体的视神经中采集的样品相比,这是一种额外的困难,具有更好的轮廓和碎屑较少。索引术语 - 深度学习,分割,髓磷脂,轴突,G比,卷积神经网络(CNN),电子显微镜
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
下一代直线对撞机应具有极小的发射度,以实现足够高的亮度。由于相互作用点处的光束尺寸非常小,高度约为十纳米,这些机器对地面运动非常敏感,从而导致不相关的机器组件紊乱。精确对准机器组件对于防止发射度稀释至关重要。1996 年,KEK 开始对电子/正电子直线对撞机的 C 波段(5712 MHz)射频系统的硬件研发。相关进展已在国际会议上报告 [1]。在本文中,我们将报告加速结构的大梁和支撑大梁的主动动子的设计。扩散性地面运动会破坏加速器元件的对准。为了补偿缓慢的地面运动,采用新理念开发了一种主动支撑动子。我们正在对动子进行长期使用质量测试。我们的新型移动器由空气弹簧和多层橡胶轴承 (MLRB) 组成,如图 2 所示。与机械千斤顶相比,空气弹簧的控制更平稳、更精细。我们使用 MLRB 来防止地震引起的支撑台快速弹出运动。移动器的详细设计和特性通过 LON 控制系统展示 [2, 3]。
葡萄膜黑色素瘤 (UM) 是成人中最常见的原发性眼内癌症。欧洲和美国的发病率为每年每百万人口 6-7 人。尽管大多数原发性 UM 可以通过放射治疗或局部肿瘤切除成功治疗和局部控制,但高达 50% 的 UM 患者会发生转移,通常涉及肝脏并在 1 年内致命。迄今为止,化疗和靶向治疗对转移性 UM 患者仅能获得极小的反应,转移性 UM 仍然以预后不良为特征。尚未建立预防或治疗其的标准治疗方法。免疫治疗药物(例如对皮肤黑色素瘤有效的免疫检查点抑制剂)的应用在眼部疾病的治疗中显示出有限的效果。这是由于 UM 独特的遗传学、自然史和与免疫系统的复杂相互作用。与主要以 BRAF 或 NRAS 突变为特征的皮肤黑色素瘤不同,UM 通常由 GNAQ 或 GNA11 突变引发。因此,目前正在研究更有效的免疫治疗方法,例如癌症疫苗、过继细胞转移和其他新分子。在本综述中,我们研究了临床和临床前研究中的新型免疫治疗策略,并重点介绍了免疫治疗的最新见解以及 UM 的个性化治疗的发展。
水泥添加剂或水泥研磨助剂 (CGA) 的范围从纯研磨助剂到功能性添加剂和性能增强剂。后者是目前使用最广泛的产品类型。性能增强剂可以提高研磨过程的效率并改善关键的机械性能,例如抗压强度。使用性能增强剂的主要原因之一,除了降低能耗外,是需要降低任何给定水泥的熟料系数。熟料不仅是水泥中最昂贵的成分,也是造成最高相关二氧化碳排放量的成分。如果可以用较低的熟料系数保持相同的水泥性能,那么这是一个双赢的局面。当前的性能增强剂通常依赖于乙二醇和胺化学的组合。这些可使抗压强度提高约 10-20%,同时将熟料系数降低高达 5%,尽管个别情况可能有很大差异。这不仅仅是添加更多产品来获得更大的强度增加或更大的熟料减少的情况。由于这些化学物质在水泥水化过程中相互作用,添加过量会导致性能下降。为了进一步减少熟料,应该研究替代技术,先进材料公司 First Graphene Ltd 与 Fosroc International(一家全球建筑行业高性能化学品制造商和供应商)之间的合作显示出巨大的前景。该合作正在考虑利用添加量极小的石墨烯来实现更高水平的熟料替代。
不良反应 疫苗和任何药物一样,都可能导致严重问题,例如严重的过敏反应。疫苗导致严重伤害或死亡的风险极小。注射部位的症状可能包括:轻微压痛、发红、瘙痒或肿胀。全身症状可能包括:接种灭活流感疫苗后患格林-巴利综合征 (GBS) 的风险略有增加,接种灭活流感疫苗和肺炎球菌疫苗 (PCV13) 和/或 DTaP 疫苗的儿童因发烧而癫痫发作的风险可能增加,接种疫苗后昏厥,以及极小的严重过敏反应、其他严重伤害或死亡的可能性。如果接种疫苗后出现高烧、行为改变或流感样症状等严重反应,请立即就医。过敏反应的症状包括接种疫苗后几分钟至几小时内呼吸困难、声音嘶哑或喘息、荨麻疹、面色苍白、虚弱、心跳加速或头晕。 我已阅读与接种流感疫苗有关的不良反应。疫苗制造商的药物信息表副本可应要求提供。此外,我也有机会询问有关免疫的问题。 我相信益处大于风险,我自愿对因我接种疫苗或由我作为其法定监护人的以下人员(“被监护人”)接种疫苗而引起的任何反应承担全部责任。 ____________________________________________ ____________________________________________ ________________ 患者/监护人姓名(印刷体) 患者/监护人签名 日期
为了提高超大规模集成器件(VLSI)的性能,电路小型化是研究人员面临的巨大挑战[1-3]。事实上,将MOSFET尺寸缩小到纳米级也会带来一些问题。例如,功耗增加以及MOSFET沟道中电场增大可能导致势垒破裂,从而产生更大的漏电流,这可能会损坏器件。随着技术的进步,CMOS已经可以制造出来[4]。然而,减小MOS晶体管尺寸会导致一些基本的物理效应:短沟道效应[5]、栅极氧化层和高场效应[6,7]。这些问题促使人们探索具有更大可扩展性潜力的后续技术,如单电子器件(SET)技术[8-11]。SET最近因其纳米级超低功耗而备受关注[12-16]。尽管 SET 具有这些有趣的特性,但它仍存在集成限制。主要问题是 SET 在室温下运行需要极小的岛容量,因此实际上意味着室温下运行的岛尺寸小于纳米 [17]。单电子元件的第二个主要问题是背景电荷的随机性。事实上,绝缘环境中捕获的单个带电杂质会使岛极化,在其表面产生 e 数量级的镜像电荷。该负载可有效地从外部负载中减去 [18]。SET 与 CMOS 技术的混合已成为下一代超小型 [19-21]、低功耗、高速纳米器件的有希望的候选者。为了了解基于 SET 的电路的特性并探索其应用,对该器件进行模拟和建模已变得非常重要 [22-25]。SET 模拟通常基于
抽象的神经形态处理系统实施具有混合信号模拟/数字电子电路和/或熟悉设备的混合信号神经网络代表了一种有希望的技术,用于需要低功率,低延迟,并且由于缺乏连接性或隐私问题而无法连接到离线处理的云,并且无法连接到离线处理。但是,这些电路通常嘈杂且不精确,因为它们受设备之间的变化影响,并且以极小的电流运行。因此,在这种方法之后,实现可靠的计算和高精度仍然是一个公开挑战,一方面阻碍了进度,另一方面有限地采用了这项技术的广泛采用。通过构造,这些硬件处理系统具有许多在生物学上合理的约束,例如参数的异质性和非同质性。越来越多的证据表明,将这种限制应用于人工神经网络,包括在人工智能中使用的限制,可以促进学习方面的鲁棒性并提高其可靠性。我们认为,这些策略对于指导设计可靠且可靠的超低功率电子神经处理系统,该系统使用嘈杂和不精确的计算基板(例如阈值神经形态电路和新兴的记忆技术)实施。Here we delve even more into neuroscience and present network-level brain-inspired strategies that further improve reliability and robustness in these neuromorphic systems: we quantify, with chip measurements, to what extent population averaging is effective in reducing variability in neural responses, we demonstrate experimentally how the neural coding strategies of cortical models allow silicon neurons to produce reliable signal representations, and show how to强有力地实施基本的计算基础,例如选择性放大,信号恢复,工作记忆和关系网络,从而利用此类策略。
功能研究至关重要,包括心电图以评估心率、心律和传导,超声心动图以测量心室大小、功能和壁厚度,以及对于有 CAD 风险的患者,通过冠状动脉造影排除阻塞性 CAD。心血管磁共振 (CMR) 也有助于病因评估。先前的研究表明,在经冠状动脉造影分类为非缺血性 DCM 的患者中,多达 13% 的患者可能出现与潜在缺血性病因一致的晚期钆增强 (LGE) 模式。4 目前尚不清楚 LGE 模式的适当病因含义,尤其是对于冠状动脉阻塞正常或轻微且没有已知风险因素的患者,甚至对于 CAD 风险极小的 20 至 30 岁患者。人们投入了大量精力去了解 LGE 的病因和意义,早期的共识是缺血型 LGE 典型表现为心内膜下或透壁性瘢痕。5 这种典型的缺血型 LGE 可以用缺血的病理生理学来解释,即坏死波阵面始于心内膜下,并向心外膜移动,最后变成透壁性。缺血型 LGE 应始终涉及心内膜下,并应定位于心外膜动脉的灌注区域。尽管 CMR 可能提示缺血型 LGE 的病因是与 CAD 相关的心肌梗死或栓塞现象,但病史和临床数据对于做出此类区分至关重要。此外,缺血型 LGE 也可在非缺血性心肌病(如结节病、淀粉样变性、法布里病等)中观察到,在这种情况下,其他关键 CMR 特征和临床数据有助于确定最终病因。5 此外,尽管 LMNA 心肌病的基因特异性研究已显示跨壁 LGE,但 LGE 模式尚未与 DCM 遗传学的广度完全整合。6,7