,例如公共基础设施,农业和供应链破坏,移民压力和加剧社会不平等的费用。此外,我们的分析并不包含人类生活的更全面价值,这超出了生产力的损失,包括对社区的情感,社会和文化贡献。此外,数据差距,尤其是在较不发达的地区,意味着真正的经济负担可能会更高。在2014年至2023年的十年中,约有16亿人受到这些事件的直接影响,强调了人类和经济成本的规模。估计的影响只捕获了一小部分影响,因此应视为下限,而真正的经济影响可能会更大。
极端天气事件对发展中国家的人均GDP的平均负面影响(根据世界银行目前的分类,此处定义为中低收入国家)。如表2所示,典型(中度)洪水可以将GDP增长降低0.37个百分点。另一方面,典型的热带气旋或飓风可以将GDP增长降低1.4个百分点。在某些情况下,由于它们对农业和灾后重建活动的有利影响,洪水也会对GDP增长产生“积极”影响(Loayza等,2012; Fomby等,2013; Campbell and Spencer,2021年)。正如预期的那样,严重的洪水和热带气旋对生长的平均影响比中度的平均影响高出几倍。
项目概述:培训社区可持续发展导航员,使其具备相关知识和技能,以教育、招募、培训和支持社区成员保护自己免受高温和烟雾的侵袭,并参与当地、地区和州的气候和健康决策过程。为科学教师和学生举办为期 8 周的极热青年领导力学院。在 100 户家庭中对 CleanCooler 进行测试,以改善热舒适度和空气质量。
抽象背景极端温度是与气候变化相关的最严重的环境健康危害之一。人寿保险公司在暴露于死亡率风险的情况下必须了解气候变化对保单持有人死亡率经历的潜在物质影响。其他具有死亡率和寿命风险的金融机构也可能受到极端温度频率或严重程度的变化的影响。然而,迄今为止,有限的证据存在于气候变化危害之间的关系,例如热压力和南非被保险人生的死亡率,以及其他发展中国家的死亡率。目的,我们研究了南非保险人的过度死亡与养老金领取者样本的过度死亡与高温和温度波动之间是否存在任何显着关系,以及在人寿保险公司的葬礼书中涵盖的生活样本。方法论,我们从与南非保险人的生活有关的两个数据来源收集了全因死亡率的每日时间序列(从2012年1月1日至2019年1月1日的退休人员数据集,以及2021年6月1日至2024年7月31日至2024年7月31日的葬礼保险数据集),以及同一时期的南非所有零件的每小时温度,从同一和最高的每日限制了我们的最高温度,我们的每日温度最高。在所有年龄段中计算了相对于其平均每月水平(“死亡率残差”)相对于其平均每月水平(“死亡率残差”)的个体标准化偏差。类似标准化
图1胰腺成像发现(a)淀粉酶高度时的对比CT:在内部观察到晦涩,增大,较差的对比区域(箭头),晦涩的直径为40 mm,部分胰腺导管在内部观察到部分胰腺。同一位点在早期层中有效较小,并且在后期逐渐增加。 (b)Pembrolizumab最终给药后5个月对比CT扫描:胰腺尾巴尾巴的改善(箭头)。 (c)MRCP:胰腺头部的普通胆管被狭窄(箭头),并在上游膨胀。主要的胰管在胰腺头上看不到,而是在胰腺体内膨胀。 (d)EUS:胰体具有低回波区域,直径为12.9 x 9.5毫米(箭头)。 (e)EUS:在25.3毫米的胰腺尾巴(箭头)的25.3毫米内有一个低回波区域。 FNA是从同一地点经频道进行的。
背景电池电动汽车(BEV)是一种有效且干净的个人运输解决方案,可消除坦克对轮(下游)温室气体(GHG)排放和尾管标准污染物排放,同时降低了石油依赖。随着可再生能源的增加,随着电网电力产量的份额增加,1相关的BEV井(上游)排放也将稳步下降。简而言之,今天购买的BEV将在车辆的完整使用寿命中变得更加清洁,因为随着时间的推移,电网变得越来越少。与传统同行相比,BEV的运行更安静,加速零件相等或更高的加速度,运动部件较少以及较低的操作和维护成本。尽管有这些好处,但主流消费者对BEV感到担忧 - 随着产品采用生命周期的扩展,新技术通常是这种情况。
旨在提高极端事件的频率和严重性,例如灾难性的浮动,破纪录的温度和前所未有的热浪,这突显了对风险评估和建模的创新方法的迫切需求。数据收集技术的现代进步提供了越来越大且复杂的数据集,只能处理快速可扩展的算法和计算软件。本期特刊旨在弥合人工智能(AI)和极值理论(EVT)之间的差距,以利用两者的优势并解决这些极端事件所带来的日益严重的挑战。
夏季温度极端可能会对人类和生物圈产生很大的影响,极端热量是气候变化最明显的症状之一。多种机制,可以预测极端热量的速度比典型的夏季更快,但目前尚不清楚这是否发生。在这里,我们表明,在观察和历史气候模型模拟中,最热的夏日在每个半球和1959年至2023年的热带地区都以与全球中位数相同的速度变暖。相比之下,最冷的夏日比全球平均平均水平中的中位数更慢,在28个CMIP6模型中,该信号在262个模拟中均未模拟。观察到的冷尾伸展表明,尽管缺乏炎热的日期扩增,观察到的夏季温度却变得更加可变。与中位数相比,可以根据表面辐射净辐射和蒸发分数的变化从表面能量平衡的角度来解释热和冷极端变暖的年际变化和趋势。热带炎热的日期放大预计将来会出现(2024- 2099,SSP3-7.0场景),而北半球的热热预计将继续跟随中位数。
•自21世纪初以来,人为的气候强迫已经加速了,这主要是由于全球经济不断增长并降低了土地和海洋Co 2水槽的吸收效率(Canadell等,2007)。基于较旧的归因期的研究经常低估全球变暖对未表现的近期极端可能性的影响,这反映了归因期间频率和样本外验证期间频率之间的差异(Diffenbaugh,2020年)。•驱动极端事件发生的物理过程之间的发生时间尺度不同,提出了独特的研究问题,并需要对事件的不同定义来了解基本机制。•过去的极端事件的数量本质上很小,由于观测值的稀缺性,可能会忽略许多事件(Seneviratne等,2021)。因此,动态模型的集合通常被其驱动程序的检测和归因委托,并且可能由模型限制引起的误解。•最新的数值气候模型中关键过程和反馈机制的不良表示,结合了初始状态下的不确定性,使复杂和混乱的系统(如大气)中的预测变得复杂(Faranda等,2017)。