。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
i-1讲座的摘要I-2的问题和答案的摘要I-3问题摘要II公共研讨会“食品安全与社会”记录II-1“基因组编辑的农作物” II-2回答无法在场地参考材料后词
⯡䛻䠈≉ᐃ䛾䝍䝇䜽䜢ᐇ⾜䛩䜛䛸䛔䛖ᙺ䜢䛘䜙䜜䠈䛭䜜䜢ᐇ ⾜䛩䜛䜒䛾䛷䛒䜛䛛䜙䠈 responsibility 䜢ᯝ䛯䛩䜒䛾䛷䛒䜛䛸ゝ䛘 䜛䠊䛭䜜䛻ᑐ䛧䛶䠈 accountability 䛿ேᕤ䝅䝇䝔䝮䛻䛿ᮇᚅ䛥䜜 䛶䜒䛔䛺䛔䛧䠈ᯝ䛯䛥䛺䛔䛸䛔䛖䛾䛜⌧≧䛷䛒䜛䛸ゝ䛘䜛䠊 ᮏㄽᩥ䛷䛿䠈௨ୖ䛾ព䛷䛾 accountability 䠄ㄝ᫂㈐௵䠅䜢 ᣢ䛱䛖䜛 AI 䜶䞊䝆䜵䞁䝖䜢ᵓ⠏䛧䠈䛭䜜䛜♫䛻ཷ䛡ධ䜜䜙䜜 䜛䠄㈐௵䜢ᯝ䛯䛩䛣䛸䜢ᮇᚅ䛥䜜䜛䠅䛣䛸䛜䛒䜚䛘䜛䛛䛻䛴䛔䛶㆟ ㄽ䛩䜛䠊 [High Level Expert Group on Artificial Intelligence 19] 䛻䜘䜛 䛸䠈 accountability 䠄ㄝ᫂㈐௵䠅䛻㛵䛧䛶⪃៖䛩䜉䛝ほⅬ䛸䛧䛶௨ ୗ䛾䠐䛴䛜ᣲ䛢䜙䜜䛶䛔䜛䠖 y ┘ᰝᢸᙜ⪅䛻䜘䜛䠈䜰䝹䝂䝸䝈䝮䜔䝕䞊䝍䜔タィ䝥䝻 䝉䝇䛻ᑐ䛩䜛┘ᰝྍ⬟ᛶ (auditability) y ㈇䛾ᙳ㡪䛾᭱ᑠ䛸ሗ࿌ (minimization and reporting negative impacts) y 䝖䝺䞊䝗䜸䝣 (trade-offs) y ⿵ൾ (redress) 䛣䜜䜙䛿䠈 AI 䜢㛤Ⓨ䛩䜛ே䜔⤌⧊䛜ᯝ䛯䛩䜉䛝✀䚻䛾ㄝ᫂ 䛸䛧䛶ิᣲ䛥䜜䛶䛔䜛䛜䠈ᮏㄽᩥ䛷䛿䠈 AI ⮬య䛻ㄝ᫂㈐௵䜢ᣢ 䛯䛫䜛䛣䛸䜢⪃䛘䜛䠊䛣䛾䛯䜑䠈ㄝ᫂䜢ᐇ⾜䛩䜛䛾䛿 AI ⮬య䛷 䛒䜛䠊ᮏㄽᩥ䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈 ᥎⸀䛧䛯ື⏬䛜㐺ษ䛷䛒䛳䛯ሙྜ䠈䜶䞊䝆䜵䞁䝖䛿䛺䛬䛭䛾 䜘䛖䛺ែ䜢ᣍ䛔䛯䛛䠈Ⓨ㜵Ṇ䛾䛯䜑䛻䛹䛖䛩䜛䛛䜢⮬䜙ㄝ᫂ 䛩䜛䠊 Ẹἲ䠓䠌䠕᮲䛷䛿䠈䛂ᨾពཪ䛿㐣ኻ䛻䜘䛳䛶ே䛾ᶒཪ䛿 ἲᚊୖಖㆤ䛥䜜䜛┈䜢ᐖ䛧䛯⪅䛿䠈䛣䜜䛻䜘䛳䛶⏕䛨䛯ᦆ ᐖ䜢㈺ൾ䛩䜛㈐௵䜢㈇䛖䠊䛃 䛸つᐃ䛧䛶䛔䜛䠊䛣䜜䛿 accountability 䠄ㄝ᫂㈐௵䠅䛾୍䛴䜢つᐃ䛧䛶䛔䜛䛸⪃䛘䜙䜜䜛䠊 ୍⯡ⓗ䛻䛿䠈ㄝ᫂㈐௵䛾䛸䜚᪉䛸䛧䛶䛿䠈ㅰ⨥䛩䜛䠋ฮ⨩䜢 ཷ䛡䜛䠋ᶒ䜔ᆅ䜢ᡭᨺ䛩䠋㈺ൾ䛩䜛➼䛜䛒䜚䛘䜛䠊ᮏㄽᩥ 䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈䛣䛾䛖䛱䛾 䛂ㅰ⨥䛩䜛䛃䛣䛸䜢ᐇ䛧䛯䠊ᶒ䜔ᆅ䜢ᡭᨺ䛩䛣䛸䛾୍✀䛸䛧 䛶䠈᥎⸀䜢᥍䛘䜛䛣䛸䜒䛒䜚䛘䜛䠊 䛂ฮ⨩䜢ཷ䛡䜛䛃䛣䛸䛜 AI 䛾㈐௵䛾䛸䜚᪉䛸䛧䛶䛒䜚ᚓ䜛䛛䛻 䛴䛔䛶䛾㆟ㄽ䜒⯆῝䛔䛜䠈ᮏㄽᩥ䛷䛿䛣䜜௨ୖ䛿ゐ䜜䛺䛔䠊 AI 䛜䛂㈺ൾ䛩䜛䛃䛣䛸䛿䠈 AI ྥ䛡䛾㈺ൾ㈐௵ಖ㝤 (liability insurance) 䠄䛯䛸䛘䜀 [ ᪥ᮏ䝻䝪䝑䝖Ꮫㄅ≉㞟 20] 䠅䛾ᑟධ䛻䜘䜚 ᐇ⌧䛷䛝䜛ྍ⬟ᛶ䛜䛒䜛䛰䜝䛖䠊䛯䛰䛧䠈ಖ㝤ᩱ䛾ᨭᡶ䛔䜢 AI ⮬య䛜䛧䛺䛔ሙྜ䛻 AI 䛜㈺ൾ䛧䛯䛸ゝ䛖䛣䛸䛿㐺ษ䛷䛺䛔䜘䛖 ࿊ཙʁˡښැښࢤࠪښۢনϴڰௌ ښܵથңָָӅܵՌָݜڂՌๅָߊ ϱνϧέτΡϔஎݜڂ࣪KDWDQDND#LLLVNLWDFMS
摘要:由于传感器技术、电信和导航系统的最新进展,多传感器信息融合算法在最先进的组合导航系统中具有关键重要性,本文提出了一种改进的创新容错融合框架。组合导航系统由四个传感子系统组成,即捷联惯性导航系统 (SINS)、全球导航系统 (GPS)、北斗二号 (BD2) 和天文导航系统 (CNS) 导航传感器。在这种多传感器应用中,一方面,有效融合方法的设计受到极大限制,特别是在没有关于系统错误特性的信息时。另一方面,开发准确的故障检测和完整性监测解决方案既具有挑战性又至关重要。本文通过联合设计故障检测和信息融合算法,解决了传统故障检测解决方案的敏感性问题以及无法获得精确已知的系统模型的问题。特别是,通过使用交互多模型 (IMM) 滤波器的思想,系统的不确定性将通过模型概率和使用所提出的基于模糊的融合框架进行自适应调整。本文还通过联合设计双状态传播器卡方检验和融合算法,解决了使用损坏的测量值进行故障检测的问题。使用两个并行运行的 IMM 预测器,并根据从融合滤波器接收到的信息交替重新激活,以提高所提出的检测解决方案的可靠性和准确性。通过将 IMM 与所提出的融合方法相结合,我们提高了检测系统的故障敏感性,从而显著提高了组合导航系统的整体可靠性和准确性。模拟结果表明,所提出的容错融合框架比传统框架具有更优异的性能。
超可靠低延迟通信 (URLLC) – 在远程维护和监控、协作机器人 (cobot) 和联网自动驾驶汽车等新用例的推动下,URLLC 将提供超快速的关键任务连接。这将实现高度准确和可靠的实时数据,这些数据可以在现场和供应链的各个部分进行大规模处理、分析、可视化和操作。这一特性对于具有极高容差要求的制造过程至关重要。接近一毫秒的延迟和非常高的带宽使实时控制制造机器成为可能,从而降低成本并提高质量。
检查患者在用多巴胺受体拮抗剂治疗时表现出帕金森氏病时,(抗精神病药物)原则上怀疑药物诱导的帕金森氏症是至关重要的。然而,在长期治疗的患者中,除了药物诱发的帕金森病外,还有帕金森氏病发作的可能性,导致运动症状恶化。本文概述了八名精神分裂症患者在多巴胺受体拮抗剂长期治疗中的诊断和治疗,后来患有帕金森氏症。在八个病例中,两个表现为静止震动,是主要的症状,以及肌肉僵硬。然而,没有头屈球的进展,datspect扫描也没有表明减少,从而导致诊断出药物诱发的帕金森氏症。在其余六个病例中,观察到铁毒素的进展,并在DATSPECT上确认了降低。因此,帕金森氏病被诊断出。为治疗帕金森氏病,左旋多巴/卡比多巴以低剂量为25/2.5 mg/day,在管理方案方案的精神病症状方案下,可以改善运动症状。在一种情况下,左旋多巴剂量增加到300毫克/天导致精神病症状恶化,在继续治疗时,必须将剂量降低至100毫克/天。鉴于几个老年人口可能患有帕金森氏病,因此必须怀疑多巴胺受体拮抗剂的长期使用者的帕金森氏病发病的可能性,并强调了对准确的诊断进行彻底研究的必要性,并与精神病学家共同提供治疗。
摘要。本文介绍了在 X 波段工作的高度集成固态功率放大器 (SSPA) 的设计和开发。最后的放大级采用 GaN 技术实现。据作者所知,这是高功率放大器中首次采用垂直方向放置最后的放大级,这可以显著缩小器件的占用空间,同时保持高输出功率和 PAE。该器件使用通过 SPI 接口控制的定制 BIAS ASIC 对整个 RF 链进行全数字控制,确保 SSPA 的高灵活性和稳定性。SSPA 的工作频率范围为 8.025–8.4 GHz,输入功率范围为 –20 dBm 至 0 dBm,输出功率为 20 瓦,功率附加效率 (PAE) 高达 35%。虽然所介绍的 SSPA 的主要应用是地球观测 (EO),但它也可以用于地面部分,例如雷达应用。
div de Novo射击器官发生是植物研究和繁殖中众多应用的先决条件,但通常是基因组编辑方法中的限制因素。III类同源核心蛋白拉链(HD-ZIP III)转录因子已被视为芽规范的关键调节剂,但是在芽再生过程中控制其活性的上流集成部分仅部分鉴定。在化学遗传筛选中,我们分离了ZIC2,这是HD-ZIP III活性的新型激活剂。使用拟南芥和阳光(Helianthus annuus)中的分子,生理和激素转运分析,我们检查了该药物促进HD-ZIP III表达的分子机制。ZIC2依赖性上调促进了拟南芥中的芽再生,并伴随着芽的指定因子WUS和RAP2.6L的诱导以及细胞分裂素生物合成酶的子集。ZIC2对HD-ZIP III的影响和再生是基于限制极性生长素转运的能力。我们进一步提供了证据,表明生长素的化学调节可以在再生顽固物种阳光下增强从头芽的形成。在芽再生过程中,HD-ZIP III转录的激活取决于生长素的局部分布和生长素转运的化学调节,可用于克服组织培养中较差的芽器官发生。
摘要:ZnO由于其高灵敏度和快速响应而对化学传感器进行了深入研究。在这里,我们提出了一种简单的方法,可以精确控制氧气空位含量,以提供商业ZnO纳米植物的丙酮感应性能的显着增强。H 2 O 2处理和热退火的组合可在ZnO纳米颗粒(NPS)上产生最佳的表面缺陷。在400的最佳工作温度下,在0.125 m H 2 O 2中,在0.125 m H 2 O 2中获得了〜27,562的最高响应,在400的最佳工作温度下,基于金属氧化物半管子(MOSS)的各种丙酮传感器中,在各种丙酮传感器中,该ZnO NP的最高响应。此外,第一原理的计算表明,在H 2 O 2处理的ZnO NP的表面上形成的预称o可以提供有利的吸附能,尤其是对于丙酮检测,由于丙酮分子和Zno表面的丙酮和预测o之间的carbonyl C原子之间的强烈双态粘结。我们的研究表明,通过H 2 O 2处理控制表面氧空位并在最佳温度下重新拨动是一种有效的方法,可以提高商业MOS材料的感应特性。关键字:气体传感器;丙酮;金属氧化物半导体(MOSS); ZnO纳米颗粒(NPS); H 2 O 2