HSA的COVID-19疫苗安全更新#14(2020年12月30日至2022年12月31日),这是HSA的14个安全更新,对Covid-19-19疫苗的第14次安全更新,涵盖了从2020年12月30日到2022年12月30日到达疫苗的期间。随着最近在6个月至4岁的幼儿进行COVID-19的疫苗接种,5至11岁的儿童的促进疫苗接种,以及二价原始/Omicron mRNA MRNA Covid-19 Covid-19疫苗,该报告提供了有关这些亚基群中可疑的不良事件(AES)1的更新。根据我们当前对本地和海外数据的评估,在这些亚组中使用疫苗的使用尚未确定新的安全信号。2新加坡使用的COVID-19疫苗2是:•mRNA疫苗:辉瑞-biontech/comirnaty,Moderna/spikevax•蛋白质亚基疫苗:nuvaxovid•灭活疫苗:灭活的疫苗:sinovac-coronavac,sinophavac,sinopharmanvac,sinopharm 3 as Sinopharm 3 as Sinopharm 3 as Sinopharm 3 as Sinopharm 3 as covidence of 20222,17,195555555 pefid decun of 17,11 1,111 covid dec.19,9,911 cevid被管理。施用的大多数剂量是单价mRNA疫苗(91.6%; 15,743,615剂),因为这些是第一批可在新加坡使用并建议使用的疫苗。接下来是灭活的Covid-19-19疫苗(4.2%; 722,419剂),二价原始/Omicron mRNA疫苗(4.0%; 685,048剂量)和Nuvaxovid疫苗(0.2%; 0.2%; 40,873剂量)。4疫苗接种已被证明是减少19日感染的死亡和严重疾病的最有效方法,并使新加坡能够缓解大多数安全管理措施。Pfizer-Biontech/Comirnaty,Moderna/Spikevax,Nuvaxovid和Sinovac-Coronavac Covid-19疫苗的好处继续超过已知风险。
我们在新颖地应用了既定的生态方法,以量化和比较简短的学生文本语料库中的语言多样性。构造的响应(CRS)是一种常见的评估形式,但由于文本长度限制而引起的传统词汇多样性方法很难评估。在本文中,我们检查了生态多样性度量和秩序技术的实用性,以通过与传统文本分析方法并行应用这些方法来量化短文中的差异,以列为先前研究的大学生CRS的语料库。CR是在两个时间点(定时),三种类型的高级机构(类型)以及三个级别的学生理解(思维)中收集的。使用以前的工作,我们能够预测,我们将根据思维观察到最大的差异,然后是时间安排,并且没有指望基于类型的差异,从而使我们能够测试这些方法对语料库进行分类检查的实用性。我们发现,将CRS相互比较的生态多样性指标(Whittaker的Beta,物种离职率和Bray -Curtis差异)是有益的,并且与我们在类别和其他文本分析方法中的差异和其他文本分析方法的差异非常相关。其他生态措施,包括香农和辛普森的多样性,衡量单个CR中语言的多样性。另外,通过将复杂的单词频率矩阵减少到二维图,定制提供了语料库的有意义的视觉表示。使用顺序图,我们能够观察CR语料库中的模式,以进一步支持我们对数据集的预测。这项工作为衡量短文中语言多样性的新方法建立了可用于检查学生语言差异以及可能与分类数据的关联的差异。
认证................................................................................................................................................ii
摘要我们引入了独特的软标志操作,该操作利用了邮票屋顶塌陷引起的间隙,以选择性地去除AU上的烷烃 - 硫醇自组装单层(SAM),以生成表面图案,这些表面图案比原始弹性邮票上的结构小。使用化学升降光刻(CLL)过程中的千分尺尺度结构邮票实现的最小特征维度为5 nm。分子图案保留在邮票特征及其周围或铭文圆之间的差距中,遵循数学预测,可以通过更改邮票结构尺寸(包括高度,音高和形状)来调整它们的尺寸。这些生成的表面分子模式可以用作生物识别阵列,也可以将其转移到下方的Au层以进行金属结构创造。通过将CLL过程与此差距现象相结合,以前被认为是使用的柔软的属性属性,可用于在简单的草图中实现低于10 nm的特征。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
基于光的投影技术越来越多地用于制造仿生组织。[1–3] 最近,通过激光光束的断层投影,已经可以快速生物制造复杂的细胞结构。[4–6] 然而,在制造肌肉和肌腱等各向异性组织时,大多数光导组织制造策略在有效细胞排列方面的潜力有限[7,8],因为大多数方法都侧重于宏观特征(> 100 μ m),而这些特征缺乏这些组织中高度排列的细胞和细胞外组织所必需的地形线索。对于可以实现细胞级(< 30 μ m)分辨率的双光子聚合和超高分辨率数字光处理等技术,非相干光源将光聚合限制在小范围(< mm)内发生,而这需要逐层策略才能实现大型组织工程结构的制造。 [1,9,10] 速度和可扩展性的折衷限制了这些方法的转化潜力。指导性线索(如纤维成分以及纤维和挤压式生物打印的组合)已被广泛研究,因为它们具有促进细胞排列和排列组织工程结构成熟的潜力,如肌肉、肌腱、神经和软骨组织。[7,11–14] 研究表明,长宽比增大的拓扑线索会影响基底内/上细胞的生物活性。例如,通过微流体或软光刻制备的棒状微凝胶(长宽比为 10)能够增加细胞取向,与微球相比,高长宽比微棒之间的空隙可以更好地实现细胞取向。[15,16] 通过微图案化技术创建的具有超高长宽比(> 20:1)的拓扑特征可以有效诱导细胞粘附和排列。 [17,18] 尤其是当限制的尺寸接近细胞核的尺度(<10μm)时,这些纵向限制导致的核变形变得明显。细胞核的细长形状可以影响细胞分化、基因表达和再生,后者通过染色体重组和激活 DNA 修复机制来实现;[19,20]
摘要 - 与普通并发和分布式系统相关联,加密协议的区别是需要推理对手干扰的必要性。我们建议通过可执行的协议语言一种新的驯化方法来驯服这种复杂性,该协议语言不会直接揭示对手,而是执行一组直觉的卫生规则。凭借这些规则,用这种语言编写的协议在没有主动的dolev-yao风格对手的情况下表现出相同的行为。因此,可以通过分析没有对手的状态空间来简化有关协议的正式推理,即使是na've模型检查也可以确定多方协议的正确性。我们介绍了辛辣的设计和实施,即正确实施的安全协议的缩写,包括其输入语言的语义;基本的安全证明,在COQ定理供奉献中正式化;和自动化技术。我们通过少数案例研究对工具的性能和能力进行初步评估。
2韩国长华旺国立大学机械工程系。*通讯作者:Young Tae Cho(ytcho@changwon.ac.kr)和Nicholas X. Fang(nicfang@mit.edu)摘要在过去的三十年中,在连续流体系统中使用微反应器在连续的流体系统中得到了迅速扩展。材料科学和工程学的发展加速了微反应器技术的进步,使其能够在化学,生物学和能源应用中发挥关键作用。数字添加剂制造的新兴范式扩大了材料灵活性,创新的结构设计以及常规微反应器系统的新功能。用功能可打印材料对空间排列的控制决定了构建的微反应器中的质量传输和能量转移,这对于许多新兴应用很重要,包括用于催化,生物学,电池,电池或光化学反应堆。然而,诸如基于多物理模型和材料验证的设计诸如缺乏设计之类的挑战正在阻止功能微反应器与实验室规模之外的数字制造相结合的功能微反应器的更广泛的应用和影响。本评论涵盖了一些最先进的数字制造功能微反应器的开发中的最新研究。然后,我们在该领域提出了主要挑战,并提供了关于未来研发方向的观点。关键字微反应器,架构材料,添加剂制造,微/纳米制作,功能材料1。1A-B)[1]。1A-B)[1]。引言微反应器由于能源效率,可扩展性,安全性和更高的控制程度而被广泛用于现代化学工艺工程中。与大型传统批处理反应堆不同,微反应器是由以毫米测量并嵌入微米尺寸的孔或通道的构型中的微型反应结构网络构建的。带有这些小维度的设备由于其较大的特定表面积提供了更有效的质量和传热,从而产生了更高的反应性能(图随着微流体系统的发展,这些微反应器使在具有内部尺寸或流体动力直径的环境中受到几何限制的工作流体的有效操纵和控制。结果,在近几十年来,微反应器的进步在化学,药物和能源应用中的重要性越来越大。此外,用于生产目的的微反应器的经济优势和改进的安全指标进一步鼓励了它们在实际工业应用中的采用。目前在商业上使用了许多针对微反应器的制造技术,包括热压,激光消融,微加工和化学蚀刻。这些技术通常在设计上被限制为二维(2D)平面通道网络,其设计更复杂,导致成本,制造复杂性和生产时间的显着提高。因此,它们不允许设计复杂性,例如复杂的三维(3D)混合途径的结合。
摘要:氢能技术是实现零排放方案和确保许多国家能源独立的最有前途的解决方案之一。氢气被认为是一种绿色能源载体,可用于能源、交通和化工领域。然而,高效安全的大规模储氢仍然具有挑战性。工业中最常用的储氢解决方案是压缩和液化,这两种方法都非常耗能。地下储氢被认为是在不同时间尺度上大规模利用的最经济、最安全的选择。在地下地质构造中,盐穴是最有前途的储氢方式,因为它们具有合适的物理化学和机械性能,即使在高压下也能确保安全高效的储存。本文介绍了地下储存的最新进展,特别强调了欧洲盐穴的利用。讨论了地下储氢的初步经验,并分析了该技术在全球范围内商业化的潜力。在波兰,来自西北和中部地区的盐矿(例如,Rogóźno、Damasławek、Łeba)
主线 SIMCOE,支持陆地协同作战实验室 LCCT (Laboratoire du Combat Collaboratif Terrestre) 资格审查工作的工具之一 背景 SIMCOE 研讨会是一个真正的数字“沙坑”,是评估陆地协同作战尤其是 SCORPION 系统的重要工具。因此,它能够以较低的成本在受控环境中测试 SCORPION 单位的大量交战配置。 专业知识 SIMCOE 研讨会拥有一套冷数据开发和可视化工具,用于评估陆地协同作战算法的性能:图形、地图背景上的可视化等。它的可视化界面使其成为一种教学工具,有助于让非专业观众更容易理解 SCORPION 的协同功能。
