2022 年世界香蕉生产量为 135 milhões de toneladas métricas(STATISTA,2024 年),并发送给巴西四张世界主要生产商(EMBRAPA,2024 年)。香蕉是天然或加工过程中食用的香蕉、香蕉帕萨、香蕉片、其他产品。 Cada tonelada de Banana Pode gerar cerca de cascas (SOUZA et al., 2010), que são geralmente descartadas (gerando Problemas de poluição) ou sub-utilizadas (por example, em alimentação Animal).考虑到食品的子产品是为了获得材料而准备的材料(OTONI 等人,2021 年),香蕉袋是生物降解薄膜产品的考虑因素。薄膜产品中存在与香蕉果皮堆肥相关的隔离物,与 Embrapa 前面的 trabalho (OLIVEIRA et al., 2017) 相比,香蕉果皮纳米复合材料中使用的香蕉果皮纤维素的果胶和纳米晶。另一种选择是对经济和环境方面的兴趣,以及对电影部分子产品整体的精心制作,以提高整体特性。 Desta forma, pode-se ainda explorar as propriedades
近年来,药理学和临床研究强调了多糖在免疫调节方面的巨大潜力。多糖可以通过分子识别、细胞内和细胞间通讯(通过与免疫系统直接或间接相互作用)引发免疫刺激反应。各种免疫刺激多糖或其衍生化合物在细胞水平上相互作用以增强免疫系统,包括阿拉伯半乳聚糖、岩藻聚糖、甘露聚糖、木聚糖、半乳聚糖、透明质酸、果聚糖、果胶和阿拉伯半乳聚糖等。这些天然多糖来源于各种植物、动物和微生物。多糖具有独特的结构多样性,而单糖和糖苷键主要赋予其不同的生物活性。这些天然多糖可提高抗氧化能力,减少促炎介质的产生,增强肠道屏障,影响肠道微生物群的组成并促进短链脂肪酸的合成。这些天然多糖还可以减少过度的炎症反应。开发可用于预防或治疗某些疾病的多糖基免疫调节剂至关重要。本综述通过阐明多糖和免疫之间的复杂关系,重点介绍了天然多糖的结构特征、免疫调节特性、潜在的免疫调节机制以及与免疫作用相关的活性。此外,还将强调这些分子作为潜在免疫调节成分的未来,它们可能会在临床层面改变药物应用。
摘要:CRISPR/CAS9一直是在不同农作物物种之间在目标地点引入精确突变的流行工具,以改善对全世界农民和育种者有益的几种必需特征。番茄是一种属于家族茄科的植物作物。在本研究中,使用CRISPR/CAS9技术编辑了番茄的植物去饱和酶(PDS)基因。PDS基因参与类胡萝卜素生物合成途径,其编辑将导致植物中的白化病。PDS基因的SGRNA通过叶盘方法设计并引入番茄系统,从而导致靶基因座的精确突变。在20%的转基因番茄植物中检测到所需基因座的编辑。严格的筛选和确认对于检测真正的CRISPR编辑始终是必需的。用于筛选PDS基因编辑,首先通过PCR确认了T-DNA的整合。通过CEL-1分析和Sanger测序进一步分析这些植物以进行突变检测和分析。在靶基因座的PAM位点上游的3-4 bp的突变植物中观察到约2 bp的缺失。PDS的编辑证实,该技术可以成功地应用于商业上重要的番茄品种中的果胶裂解酶基因,以增强保质期,这是由许多不同基因控制的复杂特征,因此是一个真正的挑战。
随着物联网 (IoT) 的快速发展和 5G 的引入,传统的硅基电子产品已无法完全满足市场需求,例如由于机械不匹配导致的非平面应用环境。这为使用柔性材料避免物理刚性的柔性电子产品带来了前所未有的可能性。丝素蛋白、纤维素、果胶、壳聚糖和黑色素因其出色的生物相容性和生物降解性而成为下一代柔性电子产品最有吸引力的材料之一。丝素蛋白在生物相容性和生物降解性方面优于它们,并且还具有多种其他理想特性,例如可调节的水溶性、出色的光学透射率、高机械弹性、重量轻和易于加工,而这些特性是其他材料部分或完全不具备的。因此,丝素蛋白已成为生物相容性柔性电子产品最广泛使用的构建块之一,尤其是用于可穿戴和可植入设备。此外,近年来,丝素蛋白的功能特性研究也越来越受到重视,如介电特性、压电特性、高失电子倾向性、环境敏感性等。本文不仅介绍了不同种类丝素蛋白的制备技术以及丝素蛋白作为基础材料应用的最新进展,还介绍了丝素蛋白作为功能元件的最新进展。本文还对丝素蛋白基柔性电子产品面临的挑战和未来发展进行了探讨。
对扑热息痛的剂量高于推荐的剂量,可能导致肝毒性,甚至肝衰竭和死亡。扑热息痛可用于肝病患者,并且在成年患有慢性稳定肝病的成年患者中,已经在一次性单次(1500 mg)和多剂量(4000 mg/天)中进行了研究。进行了一项双盲,两期,跨界研究,以评估患有稳定的慢性肝病患者的4000 mg/天的扑热息痛使用13天。没有异常表明对扑热息痛的不利反应。在正常受试者,轻度肝病患者和严重的肝病患者中比较了单个1500 mg剂量后的新陈代谢。扑热息痛和葡萄糖醛酸,半胱氨酸和乙酰氨基甲醇的胃酸偶联物的总体24小时尿排泄没有显着差异。在单次(10 mg/kg)的扑热息痛之后,轻度,中度或重度肝病患者的药代动力学特征没有显着差异。尽管严重的肝病患者长时间延长了乙酰氨基酚的血浆半衰期,但在24小时(成人)和36小时和36小时(儿童)尿果胶或其偶联物(葡萄糖醛酸,半胱氨酸,苏皮拉尿酸)的24小时(成人)和36小时(儿童)尿液排泄没有显着差异。
总结花粉壁外部为雄性配子体提供了一个保护层,并且主要由孢子囊素组成,其中包括脂肪酸衍生物和酚类。但是,外部外部的生化性质知之甚少。在这里,我们表明,在没有脊柱花粉(GHNSP)中突变的棉花1355a导致外部形成缺陷。通过基于地图的克隆鉴定了GHNSP基因座,并通过遗传分析(使用CRISPR/CAS9系统的共处测试和等位基因预测)确认。原位杂交表明,GHNSP在tapetum中高度表达。ghnsp编码与ATQRT3同源的多边形乳糖苷酶蛋白,该蛋白在花粉外外的形成中提出了聚半乳糖苷酶的功能。这些结果表明GHNSP在功能上与ATQRT3不同,后者具有微孢子分离的功能。生化分析表明,在发育阶段8的1355a花药中,去酯果胶的百分比显着增加。此外,使用对抗酯的抗体和酯化的均质均质乳糖醇(JIM5和JIM7)的抗体研究表明,GHNSP突变体在录音带中表现出丰富的脱骨含量同质性的,它具有磁带和外在的,具有特殊的远处,具有较为有效的效果。GHNSP的表征提供了对多边形乳糖醛酸酯酶和去酯的同型乳半乳糖醇在花粉外部形成中的作用的新理解。
摘要炎症性肠病(IBD)的特征是胃肠道的慢性炎症,具有不清楚的病因,但已知的因素导致了该疾病,包括遗传学,免疫反应,环境因素和肠道微生物群的失调。现有的药物疗法主要针对疾病的炎症症状,但最近的研究突显了微生物访问的碳水化合物的能力,这些碳水化合物赋予了健康益处(即益生元),以选择性地刺激有益的肠道细菌的增长,以改善IBD管理。然而,由于益生元的来源,化学成分和菌群效应各不相同,因此显然需要了解益生元选择对IBD治疗结果的影响。本综述随后探讨并对比各种来源(β-果屑,半果 - 寡糖,Xylo -Oligosacacachides,抗性淀粉,果胶,β-葡萄糖,β-葡萄糖,葡萄糖糖,葡萄糖素氧基和阿拉伯氧基)的疗效在减弱的IBD症状学中,以均为或阿拉伯糖基糖类的效果。在临床前动物结肠炎模型中,益生元揭示了类型依赖性的作用,对肠道微生物群的组成和随后的疾病指标和促炎反应的衰减作用。虽然益生元在动物模型中表现出了治疗潜力,但其精确疗效的临床证据仍然有限,这强调了IBD人类患者的进一步研究,以促进其作为微生物群靶向IBD疗法的广泛临床翻译。
传统锂离子电池建模没有提供足够的信息来准确验证在实时动态操作条件下电池的性能,尤其是在考虑各种老化模式和机制时。为了改善当前方法,本文提出了一个可以捕获实时数据并整合SEI层生长,阳极裂纹传播和锂电池之间的强耦合的锂离子电池数字双胞胎。它可以用来估算从宏观全细胞水平到显微镜颗粒水平的衰老行为,包括在动态老化条件下的电压 - 电流特征,可以预测基于镍甲虫 - 雄性 - 果胶(NMC)基于锂离子电池的降解行为,并有助于进行电化学分析。该模型可以改善细胞衰老的根本原因分析,从而对衰老机制耦合效应有定量的理解。开发了带有动态放电轮廓的三个充电协议,以模拟真实的车辆操作场景,并用于验证数字双胞胎,结合操作数阻抗测量,验尸后分析和SEM,以进一步证明结论。数字双胞胎可以准确预测电池容量在0.4%MAE之内淡出。结果表明,SEI层的生长是能力降解和阻力增加的主要因素。基于对模型的分析,得出的结论是,与标准的连续充电Pro烟光相比,提出的多步充电协议之一可以减少基于NMC的锂离子电池的降解。本文代表了未来物理知识的机器学习开发的坚定物理基础。
脂蛋白血症。前列腺素代谢 - COX 和 LOX 途径。脂质累积病和脂肪肝。牛奶脂质:分类和物理特性。自氧化、自氧化的副产物、影响因素、预防和测量;抗氧化剂 - 酶和非酶抗氧化剂。 第三单元:碳水化合物、矿物质和维生素 碳水化合物:不同碳水化合物的分类和特性。纤维素、糖原、半纤维素和果胶。葡聚糖和麦芽葡聚糖的生产。醛糖和酮糖。差向异构体。乳糖:存在、异构体、分子结构。牛奶寡糖、结构、技术方面和健康促进方面。糖酵解和糖异生概述 - 调节。柠檬酸循环和调节。戊糖磷酸途径和糖醛酸途径。糖原代谢和调节。糖原累积病。半乳糖血症。果糖不耐症和果糖尿症。乙醛酸循环。科里循环。光合作用——光反应、循环和非循环光合磷酸化。暗反应——卡尔文循环。矿物质:主要矿物质和次要矿物质。水溶性维生素:硫胺素;核黄素;烟酸;泛酸;吡哆醇;生物素;叶酸和氰钴胺素。脂溶性维生素——维生素 A 和 D。第四单元:酶酶——分类和一般特性。pH、温度和底物浓度的影响。酶抑制——竞争性、非竞争性和非竞争性抑制剂的影响。辅酶和辅因子。酶的调节——反馈抑制和共价修饰。抗体酶、核酶、DNA 酶。固定化酶——固定化方法、应用。参考 T4 溶菌酶的酶工程。酶电极。工业和
硬度是草莓最重要的果实品质性状之一。这种软果实采后保质期在很大程度上受到硬度损失的限制,而细胞壁的分解起着重要作用。先前的研究表明,多聚半乳糖醛酸酶 FaPG1 在草莓软化过程中对果胶的重塑起着关键作用。在本研究中,使用农杆菌传递的 CRISPR/Cas9 系统生成了 FaPG1 敲除草莓植株。获得了 10 个独立品系 cv.“Chandler”,经 PCR 扩增和 T7 内切酶测定确定所有品系均已成功编辑。使用靶向深度测序分析了定向诱变插入和删除率。编辑序列的百分比从 47% 到几乎 100% 不等,其中 7 个选定品系的编辑序列百分比高于 95%。表型分析表明,在所分析的 8 个品系中,有 7 个品系产生的果实明显比对照更坚硬,硬度增加了 33% 到 70%。 FaPG1 编辑程度与果实硬度增加呈正相关。其他果实品质特征(如颜色、可溶性固体、可滴定酸度或花青素含量)的变化很小。编辑后的果实在采后软化率降低,蒸腾水分损失减少,受灰葡萄孢菌接种的损害较小。对四个潜在脱靶位点的分析未发现突变事件。总之,使用 CRISPR/Cas9 系统编辑 FaPG1 基因是提高草莓果实硬度和保质期的有效方法。