合成。研究自然界中发现的结构已经并将继续推动 3D 制造策略的发展。近年来,该领域的进展取得了巨大的进步,如今相对容易制造的结构在几十年前似乎是不可能的。新的发展,特别是在由软材料或包含软硬成分的混合结构制成的结构构造方面不断涌现。创造模仿生物材料的特性和功能或可以与生物材料相互作用、探测和控制生物材料的软合成结构继续推动该领域的研究。这里,我们重点介绍了文献和我们研究的最新贡献,并利用报告强调了在软材料功能集成到复杂形式的 3D 架构的背景下,软材料化学进展的机会和当前需求。本文考虑的方法旨在强调异质集成的最新范例——利用定向组装和打印来构建复杂功能复合材料结构的 4D 制造方法。
本研究描述了一种基于物理和数据驱动的非线性系统识别 (NSI) 方法,用于检测由于振动载荷造成的早期疲劳损伤。该方法还允许实时跟踪损伤的演变。几何刚度、立方阻尼和相角偏移等非线性参数可以根据疲劳循环进行估算,这已通过实验使用暴露于振动的柔性铝 7075-T6 结构进行了证明。NSI 用于创建和更新非线性频率响应函数、主干曲线和相位轨迹,以可视化和估算结构健康状况。研究结果表明,动态相位对早期疲劳损伤的演变比几何刚度和立方阻尼参数等非线性参数更为敏感。引入了一种改进的 Carrella - Ewins 方法,从非线性信号响应计算主干,这与数值和谐波平衡结果高度一致。提出了相位追踪方法,该方法似乎可以在疲劳寿命的大约 40% 后检测到损伤,而几何刚度和立方阻尼参数能够在生命周期的大约 50% 后检测到疲劳损伤。[DOI:10.1115/1.4052420]