量子查询复杂性(有关经典调查,请参见[24])是对量子计算机需要对输入字符串X进行多少查询以学习X的各种属性的研究。关键在于,一个查询可以访问X个叠加状态的每个分支中的多个位。已有30多年了,这个主题一直是我们对量子计算机的功能和局限性所了解的核心来源。我认为,查询复杂性在整个量子计算理论中发挥了如此重要的作用有两个原因。首先,碰巧的是,大多数著名的量子算法包括Deutsch-Jozsa [26],Bernstein-Vazirani [21] [21],Simon [48],Shor [47]和Grover [47]和Grover [33] - 自然而然地进入了Shor's Algorith的Case Algorith的构造中,第二,查询复杂性不仅可以证明上限,而且还可以证明非平凡和信息性的下限 - 如1994年开创性的Bennett,Bernstein和Vazirani [20]所示,量子计算机需要ω(√
什么是查询?查询是在信息中心进行的电子检查,由雇主或其指定的 C/TPA 进行,以确定当前或未来的员工是否因未解决的药物和酒精计划违规而被禁止执行安全敏感职能,例如操作商用机动车 (CMV)。
摘要赞助的搜索在电子商务收入生成中起着至关重要的作用,广告商从战略上竞标了关键字,以通过相关的搜索查询吸引用户的注意力。但是,确定给定查询的相关关键字的过程提出了重大挑战,因为巨大而不断发展的关键字景观,模棱两可的意图和主题多样性。本文重点介绍了获得大量广告收入和用户参与度的机会,其中很大一部分的查询无法检索任何赞助的广告。为了利用此机会,我们介绍了基于库存意识的抹布生成AI模型(Invawr-rag),该模型集成了高级语义检索和实时库存数据。该模型结合了动态生成且历史上成功的查询,以与可用的库存和广告活动保持一致,同时多样化重写的查询以增强相关性和用户参与度。初步结果表明,填充率和平衡相关性指标的显着增加了68%,这表明广告收入增加了强大的潜力。Invawr-rag模型设置了动态查询优化的新标准,可在沃尔玛的数字平台上显着改善广告相关性,广告客户ROI和用户体验。
文本到SQL通过使非专家将其自然语言(NL)问题转换为结构化查询语言(SQL)查询来简化数据库交互。随着大语言模型(LLM)的进步,内在学习(ICL)已成为构建文本到SQL系统的流行选择。现实世界,行业规模的数据库通常包括表和数百列的桌子,并使整个模式将整个模式作为LLM的上下文不可估量昂贵。此要求访问正确的数据库和表集。最近提出了基于增强的增强剂(RAG)方法,用于检索给定查询的数据库和表的相关子集。但是,我们观察到,现有的合成查询生成方法可以产生主要简单的查询,这些查询可能无法充分代表复杂的现实世界查询,因此对生成的SQL的质量产生负面影响。为了解决这个问题,我们提出了一种基于创新的内在强化学习(ICRL)的框架,该框架通过增强模型生成了实践者在推理期间可能构成的复杂查询的能力来完善问题的生成过程。与现有方法相反,我们的框架与多样化和复杂的合成SQL查询产生。我们通过多个实验与公共标准数据集中的代表性最先进模型进行了比较,揭示了我们的方法的有效性,并观察到性能和可伸缩性的实质性提高。与用于识别模式的最新模型相比,数据库/表检索任务中的回忆提高了15-20%,而SQL生成的执行精度高达2%。
文本到SQL通过使非专家将其自然语言(NL)问题转换为结构化查询语言(SQL)查询来简化数据库交互。随着大语言模型(LLM)的进步,内在学习(ICL)已成为构建文本到SQL系统的流行选择。现实世界,行业规模的数据库通常包括表和数百列的桌子,并使整个模式将整个模式作为LLM的上下文不可估量昂贵。此要求访问正确的数据库和表集。最近提出了基于增强的增强剂(RAG)方法,用于检索给定查询的数据库和表的相关子集。但是,我们观察到,现有的合成查询生成方法可以产生主要简单的查询,这些查询可能无法充分代表复杂的现实世界查询,因此对生成的SQL的质量产生负面影响。为了解决这个问题,我们提出了一种基于创新的内在强化学习(ICRL)的框架,该框架通过增强模型生成了实践者在推理期间可能构成的复杂查询的能力来完善问题的生成过程。与现有方法相反,我们的框架与多样化和复杂的合成SQL查询产生。我们通过多个实验与公共标准数据集中的代表性最先进模型进行了比较,揭示了我们的方法的有效性,并观察到性能和可伸缩性的实质性提高。与用于识别模式的最新模型相比,数据库/表检索任务中的回忆提高了15-20%,而SQL生成的执行精度高达2%。
防止 SQL 注入攻击的最有效方法是对所有数据库访问使用参数化查询(也称为准备好的语句)。此方法使用两个步骤将可能被污染的数据合并到 SQL 查询中:首先,应用程序指定查询的结构,为每项用户输入留下占位符;其次,应用程序指定每个占位符的内容。由于查询的结构已在第一步中定义,因此第二步中的格式错误的数据不可能干扰查询结构。您应该查看数据库和应用程序平台的文档,以确定可用于执行参数化查询的适当 API。
SUPSHIP 将指定一名 FOIA 协调员,公众和 SUPSHIP 人员将向其提出所有 FOIA 查询或问题。主管可以充当发布权人,也可以将发布权委托给 FOIA 协调员。承包官员应避免与公众(包括潜在投标人)讨论 FOIA 问题。所有与 FOIA 请求相关的对话都必须记录在 FOIA 协调员的请求文件中。由于 SUPSHIP 有 NAVSEA 法律顾问办公室代表,因此他们对其活动收到的 FOIA 请求拥有初步拒绝权。此权力仅委托给主管。参考 (b),NAVSEAINST 5720.5B**,《信息自由法 (FOIA) 计划》,提供了更多详细信息。
查询知识库是知识表示中最重要和最基本的任务之一。尽管查询知识库的大部分工作都集中在连接查询上,但通常需要使用一种简单的递归形式,例如常规路径查询 (RPQ) 提供的递归形式,它要求由给定的常规语言定义的路径。连接 RPQ (CRPQ) 可以理解为具有这种递归形式的连接查询的泛化。CRPQ 是 SPARQL 的一部分,SPARQL 是用于查询 RDF 数据的 W3C 标准,包括众所周知的知识库,如 DBpedia 和 Wikidata。特别是,RPQ 在查询 Wikidata 方面非常流行。根据最近的研究 (Malyshev 等人,2018 年;Bonifati 等人,2019 年),它们用于超过 24% 的查询(以及超过 38% 的独特查询)。更一般地说,CRPQ 是查询图形结构数据库的基本构建块 (Barcel´o,2013 年)。随着知识库变得越来越大,对查询的推理(例如用于优化)变得越来越重要。最基本的推理任务之一是查询
如果重新考虑后您仍然不满意,您可以向独立法庭上诉。我们的强制重新考虑通知将告诉您如何执行此操作。在英格兰、苏格兰和威尔士,您可以直接向独立法庭上诉,而无需先请求强制重新考虑。您可能能够在北爱尔兰直接向北爱尔兰上诉服务处上诉。
作为智能制造应用的领先供应商,找到一种解决方案来管理更接近实时的大量传感器数据并轻松集成到其应用生态系统中至关重要。他们需要一种解决方案来取代传统的数据库解决方案,以满足智能制造的要求并能与其创新的 AI 解决方案集成。为了保持竞争力并扩大其客户群的能力,他们需要一个数据库系统来管理时间序列数据,提供提取和查询性能、实时快速分析、处理流和历史数据的能力以及可扩展和可互操作的架构。