JCET 徽标是长电科技集团股份有限公司的注册商标。该商标在中华人民共和国注册(注册号:3000529)。此处的所有其他产品名称和其他公司名称仅供识别之用,可能是其各自所有者的商标或注册商标。本手册以及此处的数据表仅供展示之用,长电科技或其子公司不保证或作出任何明示、暗示或法定的准确性、充分性、可靠性、完整性或其他方面的陈述。建议读者在做出任何决定之前,随时寻求专业建议并获得对此处包含的信息的独立验证。长电科技保留随时更改信息的权利,恕不另行通知。©版权所有 2019。长电科技集团股份有限公司。保留所有权利。
摘要 - 在电源电路中,栅极驱动器需要提供功率半导体器件的最佳和安全切换。如今,栅极驱动器板包含越来越多的功能,例如短路检测、软关断、温度感应、通态电压监控……正在研究集成在线监控功能以实现预测性维护。栅极驱动系统的仪表假定集成了通信系统来传输监控数据。在高功率设计中,栅极驱动器板上必须进行电流隔离。隔离栅上的寄生电容在这些设计中至关重要,因为它可能导致切换期间共模电流的循环。因此,由于电磁干扰 (EMI) 的限制,在隔离栅上添加额外的光耦合器或变压器是有风险的。本文提出了一种用于驱动 1.2kV SiC 功率 MOSFET 的栅极驱动器的新型双向数据传输方法。所提出的方法可以在单个电源变压器上实现能量传输和双向数据交换。实验结果表明 TxD 为 1Mb/s,RxD 为 16kb/s。目标应用是使用栅极驱动器板对 SiC 功率 MOSFET 进行健康监测。
可以通过 ESSBD 上的 BOL 与 SEA2P 板进行通信。E8 SEA2P 板 ID 为 23706 E9 SEA2P 板 ID 为 23705
XO/CO 海上军官指挥 CDR BENKO, RYAN SANTA BARBARA BLUE (LCS 32) CDR BABCOCK, DONALD MAHAN (DDG 72) LCDR ELLISON, LAUREN GERMANTOWN (LSD 42) LCDR HAYES, CHRISTOPHER PREBLE (DDG 88) CDR HOLT, PRESTON PORTER (DDG 78) CDR HUETER, AMELIA CANBERRA BLUE (LCS 30) LCDR LASHOMB, DAVID MOMSEN (DDG 92) LCDR LILEKS, WAYNE MOBILE (LCS 26) CDR LOVE, PATRICK ST LOUIS (LCS 19) LCDR MARSH, ANDREW FARRAGUT (DDG 99) LCDR MARTIN, PHILLIP MILIUS (DDG 69) LCDR PARK, JONATHAN霍华德 (DDG 83) 帕特森中校,安妮·苏利文 (DDG 68) 理查兹中校,斯科特·哈珀斯费里 (LSD 49) 西姆斯中校,布莱恩·马里内特 (LCS 25) 西斯勒中校,瑞安·保罗·伊格纳修斯 (DDG 117) 斯米罗斯中校,斯蒂芬妮·米切尔 (DDG 57) 斯塔顿中校,丹尼尔·拉梅奇 (DDG 61)
SAP AI Launchpad 是 SAP 业务技术平台 (SAP BTP) 上的多租户软件即服务 (SaaS) 应用程序。客户和合作伙伴可以使用 SAP AI Launchpad 跨多个 AI 运行时实例(例如 SAP AI Core)管理 AI 用例(场景)。SAP AI Launchpad 还通过 Generative AI Hub 提供生成式 AI 功能。
摘要 有效的热管理对电动汽车用锂离子电池的性能和耐久性至关重要。与传统的直通道冷板不同,本文提出并评估了一种具有发散形通道的新型冷板,以最大限度地降低冷板的最高温度和压降。与传统的直通道相比,发散形通道表现出更高的散热能力和更低的摩擦阻力,性能更佳。为了进一步降低局部流动阻力,开发并评估了具有 2 个入口和 1 个出口的发散形通道。研究发现,具有 2 个入口和 1 个出口的新设计可以成功降低压降 7.2%,并将最大温差从 4.69 K 降低到 3.94 K。最后,构建了具有逆流配置的电池冷却模块,实现了更小的最大温差。本研究有助于开发有效且高效的电动汽车电池冷却系统。
本文介绍了通过数字图像相关 (DIC) 技术对球栅阵列 (BGA) 上焊球的热膨胀系数 (CTE) 进行分析的方法。由于微尺度元件对热的敏感性,评估半导体元件的热机械性能是一项主要挑战。然而,BGA 的 CTE 分析对于解决导致故障的热失配应变问题具有重要意义。同时,焊球热膨胀的测量是在微尺度和加热条件下进行的,传统的应变测量方法无效。在本分析中,使用微 DIC 系统测量焊球在加热台上受到温度载荷时的应变值。使用加热台内的热电偶测量焊球的实际温度,以确保温度的均匀性。获得特定温度下测得的应变,并使用线性分析绘制 CTE 图表。测得的焊球的平均 CTE 值为 27.33 × 106 / oC。结果表明,测量结果接近焊球 CTE 的参考值。该分析使用开发的 DIC 方法对 BGA 进行了可靠的分析。
摘要 金属-石墨烯接触电阻是限制石墨烯在电子设备和传感器中技术开发的主要因素之一。高接触电阻会损害器件性能并破坏石墨烯固有的优良特性。在本文中,我们制造了具有不同几何形状的背栅石墨烯场效应晶体管,以研究接触和沟道电阻以及载流子迁移率随栅极电压和温度的变化。我们应用传输长度法和 y 函数法,表明这两种方法可以相互补充以评估接触电阻并防止在估计载流子迁移率对栅极电压的依赖性时出现伪影。我们发现栅极电压以类似的方式调节接触和沟道电阻,但不会改变载流子迁移率。我们还表明,升高温度会降低载流子迁移率,对接触电阻的影响可以忽略不计,并且可以根据施加的栅极电压诱导石墨烯薄层电阻从半导体行为转变为金属行为。最后,我们表明,消除接触电阻对晶体管沟道电流的不利影响几乎可以使载流子场效应迁移率翻倍,并且通过 Ni 接触的锯齿形成形可以实现低至 700 Ω · μ m 的竞争性接触电阻。