序言 航空航天业已迅速转变为一个全球性行业,全球供应商和主要公司作为国际合作伙伴关系中的扩展企业发挥作用。标准 1 是全球用于设计、制造和维护航空航天产品的最大技术数据来源。这些标准以及用于开发和分发这些标准的流程需要更好地定位以支持这个全球行业。目前,航空航天标准体系过于复杂,有时甚至重复。这导致多个标准开发人员处理类似技术的成本增加,基于竞争标准的监管要求协调;由于存在多个标准,需要进行多次符合性评估(验证和确认)和质量管理审核;以及拥有冗余和重叠的标准和标准基础设施的效率低下。此外,为了使航空航天和国防公司实现技术卓越,领导层和员工必须了解所有技术领域标准和标准化的价值。反之亦然;从事标准业务的任何人都应该充分了解并好奇哪些与标准相关的实体可能会影响他们的技术。作为总体实体,最重要的三个组织是: • 美国国家标准协会 (ANSI)。• 国际标准化组织 (ISO)。• 国际电工委员会 (IEC)。在美国,有 238 个 ANSI 认可的标准制定者;2 13,136 项美国国家标准;103 个美国 ISO 管理的技术委员会 (TC) 和小组委员会 (SC);91 个美国担任的 ISO 主席,包括 ISO TC 20 飞机和航天器; 237 个 ISO-美国技术咨询小组 (TAG);169 个 IEC 美国TAG;以及 26 个美国管理的 IEC TC。还有许多其他组织、行业协会、财团和相关实体在 ANSI 保护伞之外运作,其中一些列在附录 B 中。在美国标准化体系中,ANSI 发挥着领导作用,使美国在这一领域独树一帜。关于该系统如何为美国航空航天和国防公司以及其他行业的美国企业运作,存在许多误解和误解。为解决这些问题,航空航天工业协会 (AIA) 理事会于 2003 年成立了航空航天标准化工作组未来 (FASWG)。该小组的章程旨在:• 确定旨在支持全球航空航天业的标准系统的关键要求。• 根据定义的要求检查当时使用的主要标准开发模型和组织。• 制定一套建议,以向航空航天业所需的最佳标准系统迁移。
这些因素涵盖了政府应该考虑的一些因素,但是存在很大的差距。基本缺陷是,基于生物质的电力资产及其转换为Beccs for Power for Power应该在这些测试中失败:首先,政府在此咨询文件中认识到生物质市场是不足的,不成熟的,并且不成熟且较少,供应量很少,供应量很少。根据2023年生物质策略,2022年34%用于可再生能源供应(热,电和运输)用于可再生能源的原料。这将当前和未来的电力部门暴露于实际的安全风险中,这只会随着其他国家追求生物质和BECCS系统的转换而增加。进一步支持生物质选项将不会减少这种接触。鉴于此,第一个因素需要采取更广泛的能源安全方法。尽管生物量和BECCS工厂可以为发电的多样性做出贡献,并有助于平衡供求,但需要考虑使用国内外来源的燃料供应风险。第二,当Power-Beccs用于负排放时,它将需要运行基本负载以最大化碳捕获,从而导致总体发电量降低。在那个阶段,跑步会灵活地妨碍交付负排放的能力。在临时期(2027-2030)中,大型生物能源植物有可能灵活地运行并平衡网格,而更多的间歇性一代将在上网,但是这种灵活性必须在2030年结束。因此,长期,设计并不是为了灵活性。政府认识到,随着供应方面的可变性水平,我们正面临着电力系统结构的根本变化,英国的国家电网先前表示,基本电加载发电的时代正让位于灵活,敏捷和智能供应和需求的时代。1因此,从定义上讲,在没有专门思考其在敏捷和智能系统中的作用的情况下,进一步支持这些大型结构似乎未能为未来提供可靠的电源服务。第三,基于生物质的系统为煤或天然气产生的反事实提供的益处的建议是有缺陷的。,英国发电的中期反事实是低成本风和太阳能系统,具有相应的存储容量。这意味着我们可以在发电点发射零,而不是“远小于气体”。二,该陈述假定生物质在其生命周期上是中性的,并且所使用的生物质是可持续的。在涉及动态的土地系统,国际供应链,十年长期监视期以及众多分布在不同司法管辖区的系统中,涉及在涉及动态的土地系统,国际供应链,长期监视期以及众多利益相关者方面涉及的困难。尚不清楚英国目前的可持续性标准系统地带来了这一碳的利益,而新的,加强的标准的发展应该提前同意支持未来的生物量系统,而不是作为坚定的支持。
系统生物学的第一门课程是为高级本科生和研究生设计的,以探索系统生物学领域。本书着重于计算模型及其对各种生物系统的应用。它介绍了代表系统生物学和合成生物学领域的前沿的建模,分子清单和案例研究的基础。这为执行标准系统生物学任务,了解现代文献并启动专门课程或项目提供了全面的背景和访问方法。系统生物学:综合介绍第三版本书是系统生物学的介绍,一个越来越多的领域,侧重于应用于各种生物医学现象的计算模型的设计和分析。首先要涵盖建模的基本原理,然后对将生物系统栩栩如生的分子清单进行回顾。这本书结束了案例研究,展示了系统生物学和合成生物学领域的前沿。文本探讨了医学和药物开发中生理建模,心脏功能和系统生物学等主题。它还深入研究了新兴领域,例如基于代理的和多尺度建模,生物设计原理,代谢通量分布,合成生物学,个性化医学和虚拟临床试验。在整本书中,读者将对系统生物学有一个全面的了解,包括访问执行标准任务,接触现代文学的方法以及启动专业项目的基础。本第三版已对文本进行了彻底的更新,为读者提供了该领域的最新知识和见解。新版本具有默认模块,限制周期,混乱,参数估计,基因调节模型表示,Michaelis-Menten Rate Law,不同类型的抑制作用,滞后,系统适应,非线性无效,PBPK模型和基本模式的主题。该格式将教学文本与对主要文献的参考结合在一起,并伴随着实践练习,以供经验和开放式问题进行反思。第1章讨论了生物系统,还原主义和系统生物学,强调了该领域交流的重要性。第2章研究数学建模,涵盖目标,输入,初始探索,模型选择,设计,结构,方程,参数估计,分析,诊断,一致性,鲁棒性,鲁棒性,探索,验证,验证,使用,应用,扩展,扩展,改进和大规模评估。Chapter 3 focuses on static network models, including strategies of analysis, interaction graphs, properties of graphs, small-world networks, dependencies among network components, causality analysis, mutual information, Bayesian reconstruction, application to signaling networks, static metabolic networks, stoichiometric networks, variants of stoichiometric analysis, metabolic network reconstruction, and metabolic control analysis.第5章通过涉及单个变量或几个变量的线性回归探索线性系统的参数估计。本章以测量基因表达及其定位的检查结束。Chapter 4 discusses the mathematics of biological systems, covering discrete linear systems models, recursive deterministic models, recursive stochastic models, discrete nonlinear systems, continuous linear systems, linear differential equations, linearized models, continuous nonlinear systems, ad hoc models, canonical models, more complicated dynamical systems descriptions, standard analyses of biological systems models, steady-state analysis, stability analysis, parameter灵敏度,系统动力学分析,限制周期和混乱的吸引子。它还涵盖了全面的网格搜索,非线性回归,遗传算法,其他随机算法,典型的挑战以及微分方程系统的结构识别。第6章讨论了基因系统,涵盖了DNA和RNA的主要教条,关键特性,化学和物理特征,大小,形状,基础,基础组成,复制,转录,翻译,调节,控制机制,基因的调控,蛋白质功能的调控,蛋白质功能,信号通路,基因网络,网络组成,组成,网络,组成,组成,组合和分析网络和分析。本书探讨了各种生物系统,包括DNA,基因和非编码DNA,以及真核DNA的填料和调节。RNA的一章深入到Messenger RNA(mRNA),转移RNA(tRNA),核糖体RNA(rRNA)和小RNA,然后讨论RNA病毒和基因调节。基因表达详细介绍,主题包括LAC操纵子,调节模式,转录因子和基因调节模型。以下各章关注蛋白质系统,讨论蛋白质的化学和物理特征,实验蛋白质结构的确定和可视化,酶,转运蛋白以及信号传导以及允许蛋白质。蛋白质,以及目前在蛋白质研究,蛋白质组学,结构功能预测,定位以及蛋白质活性和动态方面面临的挑战。代谢系统涵盖在第8章中,其中包括生化反应,基本反应的数学公式,速率定律,途径和途径系统。本章还讨论了生物化学和代谢组学,计算途径分析的资源,控制途径系统的控制,代谢组数据生成方法,采样,提取,分离,检测,检测,通量分析以及实验数据的动态模型。第9章探讨了信号系统,包括使用布尔网络和网络推理的信号转导网络的静态模型。信号转导系统以微分方程为模型,涵盖了诸如双重性和磁滞,两组分组信号系统,有丝分裂原激活的蛋白激酶级联反应,适应性和其他信号系统等主题。第10章深入人口系统,讨论了人口增长的传统模型,更复杂的增长现象,外部扰动下的种群动态,亚种群的分析,相互作用的人群,相位平面分析以及更复杂的人口动态模型。最后一章是酵母中基因组,蛋白质和代谢产物数据综合分析的案例研究。它回顾了模型的起源,讨论了酵母中的热应激反应,分析海藻糖周期,设计和诊断代谢途径模型,解释了葡萄糖动态,检查基因表达并介绍了多尺度分析和Multiscalar模型设计。第12章提供了使用心脏作为例证的生理建模的示例。它涵盖了量表和建模方法的层次结构,心脏解剖结构的基础知识,在各个级别(器官,组织,细胞)上建模目标,振荡的简单模型,振荡的黑盒模型以及从黑盒中的过渡到有意义的模型,包括电化学。本章讨论了系统生物学的各个方面,包括: *对心肌细胞电化学过程的生物物理描述 *静止的潜力和动作潜力以及这些过程的模型 *问题 *问题 *与重复心跳和失败的心脏相关的过程,并重点介绍了基于Biocartiol of Meciatoliviodial of Medial of Systrimic of Meciatolion of Medial of Systrologial Systems,涵盖了分子的范围:疾病以及个性化医学和预测性健康 *系统生物学在药物开发中的作用,从计算靶标和铅鉴定到使用动态模型的药代动力学建模和途径筛查,本章还深入研究了生物系统的设计原理,包括网络图案,操作原理,以目标为导向的操纵。它还通过代谢工程,基因回路和系统生物学在药物开发中的新作用来探讨合成生物学。最后,本章介绍了系统生物学中的新兴主题,例如: *对复杂疾病,炎症,创伤,生物的建模需求及其与环境的相互作用 *数据建模的研究管道对生物学理论或几种理论。