脑机接口 (BCI) 是一种通过计算机为任何人提供通信渠道的系统。最初,它被提议用于帮助残疾人,但实际上已被提出更广泛的应用。然而,BCI 系统中的跨受试者识别很难脱离个体特定特征、不稳定特征和环境特定特征,这也使得开发高可靠性和高稳定性的 BCI 系统变得困难。快速序列视觉呈现 (RSVP) 是最新的拼写器之一,具有干净、统一的背景和单一刺激,可以唤起个体差异较小的事件相关电位 (ERP) 模式。为了建立一个允许新用户直接使用的 BCI 系统而无需校准或校准时间更短,RSVP 被用作诱发范式,然后提出了相关分析等级 (CAR) 算法来改进跨个体分类并同时使用尽可能少的训练数据。58 名受试者参加了实验。闪光刺激时间为200 ms,关闭时间为100 ms,通过时间将P300成分锁定在目标表征上。结果发现,与矩阵范式相比,RSVP能在被试间诱发更多相似的ERP模式。然后对每两个平均ERP波形计算并统计夹角余弦,矩阵范式下所有被试的平均匹配数为6,而RSVP范式在阈值设为0.5时平均匹配数范围为20,是矩阵范式的3倍多,定量表明RSVP范式诱发的ERP波形产生的个体差异更小,更有利于跨被试分类。还计算了 RSVP 和矩阵范式的信息传输速率 (ITR),RSVP 范式的平均 ITR 为 43.18 比特/分钟,比矩阵范式高 13%。然后,计算了受试者工作特征 (ROC) 曲线值,并使用所提出的 CAR 算法和传统随机选择进行了比较。结果表明,所提出的 CAR 的性能明显优于传统随机选择,并获得了最佳的 AUC 值
抽象目标。运动解码对于翻译脑部计算机界面(BCIS)的神经活动至关重要,并提供了有关如何在大脑中编码运动态的信息。深神经网络(DNNS)正在成为有前途的神经解码器。尽管如此,目前尚不清楚DNN在不同的电机解码问题和方案中的表现如何,哪个网络可以成为入侵性BCIS的良好候选人。方法。完全连接,卷积和复发性神经网络(FCNN,CNNS,RNNS)设计并应用于从麦克拉(Macaques)后顶叶皮层(PPC)中从V6A区域记录的神经元中解释运动态。考虑了三个运动任务,涉及到达和到达(后者在两个照明条件下)。dnns使用试用课程中的滑动窗口接近3D空间中的九个到达终点。为了评估模拟各种场景的解码器,还分析了性能,同时人为地减少了记录的神经元和试验的数量,并在执行从一项任务到另一个任务的转移学习时。最后,准确的时间课程用于分析V6A电机编码。主要结果。dnns的表现优于经典的幼稚贝叶斯分类器,而CNN在整个电机解码问题上还优于XGBoost和支持向量机分类器。cnns使用较少的神经元和试验时,导致了表现最佳的DNN,并且任务对任务转移学习改善了性能,尤其是在低数据制度中。意义。最后,V6A神经元甚至从动作计划中编码并触及到gr的属性,稍后发生握把属性的编码,更接近移动执行,并且在黑暗中显得较弱。结果表明,CNN是有效的候选者,可以从PPC记录中实现人类侵入性BCI的神经解码器,这也减少了BCI校准时间(转移学习),并且基于CNN的数据驱动分析可以提供有关大脑区域的编码特性和功能性启动的见解。
背景:脑机接口(BCI)系统帮助运动功能障碍患者与外界环境进行交互。随着技术的进步,BCI系统已在实践中得到应用,但其实用性和可用性仍然受到很大挑战。使用BCI系统前往往需要大量的校准时间,这会消耗患者的精力和耐心,并容易导致焦虑。针对这一问题,我们提出了一种与受试者无关的零校准方法。方法:提出一种双分支多尺度自编码网络(MSAENet)实现与受试者无关的运动想象分类,旨在实现BCI的即插即用。首先,该网络由一个多尺度分支和一个自动编码器(AE)组成,用于从不同角度进行特征学习。其次,以EEG信号与8-30 Hz频段内常见空间模式之间的协方差作为空谱特征,并将特征预提取信息作为MSAENet的输入。最后,网络引入中心损失函数提升分类能力。在三个公开数据集BCIV2a,SMR-BCI,OpenBMI上测试网络泛化能力。结果:结果表明,所提网络在三个数据集上均表现出良好的效果,在受试者独立的情况下,MSAENet在BCIV2a和SMR-BCI数据集上优于其他四种比较方法,而在OpenBMI数据集上F1得分值高达69.34%;分类性能最好的受试者相关结果明显优于其他四种先进的比较方法。我们的方法在保证较少的参数量和较短的预测时间的同时,能够保持较好的分类精度。结论:MSAENet验证了以下三点:(1)空间频域特征可以从原始EEG信号中提取有效信息。(2)双分支多尺度特征融合可以更全面地提取特征。 (3)中心损失函数的引入弥补了Softmax分类器只考虑类间距而忽略类内距离的缺陷,实现了零校准,有效解决了BCI应用中需要大量校准时间的问题。
摘要:已提出了与错误相关的电位(ERRP)作为改善大脑 - 计算机界面(BCI)性能的一种手段,方法是纠正BCI执行的不正确操作或标记数据以连续适应BCI以改善性能。后一种方法可能在中风康复中相关,在这种康复中,通过使用在整个康复过程中持续个性化的广义分类器,可以将BCI校准时间最小化。如果数据正确标记,则可以实现这一目标。因此,这项研究的目的是:(1)对中风的个体产生的单次试验错误,(2)调查测试 - 重测可靠性,(3)比较不同的分类校准方案与不同的分类方法与人工新神经网络(ANN,ANN,ANN,和LINARINAL ANTIFERINAL,LDA)的不同分类方法(人工Neuratial网络)和LDA的含义。25个中风的人在两天的时间里试图执行运动,然后在记录连续脑电图时收到反馈(错误/正确)。脑电图分为时期:errps和nonerrps。根据时间特征或整个时期,将时期与多层感知器ANN分类。此外,将特征与收缩LDA分类。特征是来自感觉运动皮层的ERR和非ERRPS的波形,以改善分类器输出的解释性和解释。测试了三个校准方案:今天,日间和跨参与者。使用日期校准,将90%的数据与整个时期正确分类为ANN的输入;当使用时间特征作为ANN和LDA的输入时,它降至86%和69%。两天之间的测试可靠性较差,而其他校准方案导致准确性在63-72%的范围内,LDA表现最好。个人的损伤水平与分类精度之间没有关联。结果表明,可以在中风的个体中对错误进行分类,但是使用这种方法最佳解码需要使用用户和会话特定的校准。使用ERRP/NONERRP波形特征使对分类器输出的生理有意义解释成为可能。结果可能对在BCI中连续将数据进行标记以进行中风康复,从而有可能改善BCI性能。
运动图像(MI)允许设计自定进度的大脑 - 计算机界面(BCIS),该界面有可能提供直观且连续的相互作用。但是,具有三个以上命令的非侵入性MI基于BCI的实施仍然是一项困难的任务。首先,解码不同动作的MIS数量受到在相应来源之间保持足够间距的限制,因为近区域的脑电图(EEG)活性可能会加起来。第二,脑电图产生了大脑活动的相当嘈杂的图像,这会导致分类性能差。在这里,我们提出了一种解决方案,通过使用合并的MIS(即同时涉及2个或更多身体部位的错误)来解决可识别的运动活动的局限性。,我们提出了公共空间模式(CSP)算法的两种新的多标记用途,以优化信噪比,即MC2CMI和MC2SMI方法。,我们在8级的脑电图实验中记录了来自七个健康受试者的脑电图信号,包括剩余条件和所有可能的组合使用左手,右手和脚。所提出的多标记方法将原始的8级问题转换为一组三个二进制问题,以促进使用CSP算法。在MC2CMI方法的情况下,每个二进制问题组在一个类别中共同参与了三个选定的身体部位之一,而其余的不参与相同身体部位的MIS则在第二类中分组在一起。以这种方式,对于每个二进制问题,CSP算法都会产生特征,以确定特定的身体部分是否从事任务。最后,通过应用8级线性判别分析,将三组功能合并在一起,以预测用户意图。MC2SMI方法非常相似,唯一的区别是,在训练阶段考虑的任何组合MIS,这大大加速了校准时间。对于所有受试者,MC2CMI和MC2SMI方法的精度都比经典的配对(PW)和One-Vs.-All(OVA)方法更高。我们的结果表明,当正确调制大脑活动时,多标签方法代表了一个非常有趣的解决方案,可以增加命令数量,从而提供更好的相互作用。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。