运动图像(MI)允许设计自定进度的大脑 - 计算机界面(BCIS),该界面有可能提供直观且连续的相互作用。但是,具有三个以上命令的非侵入性MI基于BCI的实施仍然是一项困难的任务。首先,解码不同动作的MIS数量受到在相应来源之间保持足够间距的限制,因为近区域的脑电图(EEG)活性可能会加起来。第二,脑电图产生了大脑活动的相当嘈杂的图像,这会导致分类性能差。在这里,我们提出了一种解决方案,通过使用合并的MIS(即同时涉及2个或更多身体部位的错误)来解决可识别的运动活动的局限性。,我们提出了公共空间模式(CSP)算法的两种新的多标记用途,以优化信噪比,即MC2CMI和MC2SMI方法。,我们在8级的脑电图实验中记录了来自七个健康受试者的脑电图信号,包括剩余条件和所有可能的组合使用左手,右手和脚。所提出的多标记方法将原始的8级问题转换为一组三个二进制问题,以促进使用CSP算法。在MC2CMI方法的情况下,每个二进制问题组在一个类别中共同参与了三个选定的身体部位之一,而其余的不参与相同身体部位的MIS则在第二类中分组在一起。以这种方式,对于每个二进制问题,CSP算法都会产生特征,以确定特定的身体部分是否从事任务。最后,通过应用8级线性判别分析,将三组功能合并在一起,以预测用户意图。MC2SMI方法非常相似,唯一的区别是,在训练阶段考虑的任何组合MIS,这大大加速了校准时间。对于所有受试者,MC2CMI和MC2SMI方法的精度都比经典的配对(PW)和One-Vs.-All(OVA)方法更高。我们的结果表明,当正确调制大脑活动时,多标签方法代表了一个非常有趣的解决方案,可以增加命令数量,从而提供更好的相互作用。
主要关键词