当前基于运动图像的大脑计算机界面(BCI)系统需要在每个会话开始时进行较长的校准时间,然后才能以足够水平的分类精度使用。特别是,对于长期BCI用户而言,此问题可能是重大负担。本文提出了一种新颖的转移学习算法,称为R-KLWDSA,以减少长期用户的BCI校准时间。建议的R-KLWDSA算法使用一种新的线性比对方法,将以前会话中用户的脑电图数据与当前会话中收集的少数EEG试验相结合。此后,先前会议的EEG试验和当前会话中的少量EEG试验进行了对齐的EEG试验,然后通过加权机制融合了它们在用于校准BCI模型之前。为了验证所提出的算法,使用了一个大型数据集,其中包含来自11名中风患者的脑电图数据,每个患者进行了18个BCI会议。与会议特定算法相比,所提出的框架表明,分类准确性的显着提高了4%以上,而本课程中每个课程可获得的两次试验少于两项试验。所提出的算法在提高初始会议准确性低于60%的会话的BCI准确性方面特别成功,其准确性的平均提高约为10%,导致中风患者具有有意义的BCI康复。
摘要 — 脑机接口 (BMI) 已成为辅助技术的变革力量,通过实现设备控制和促进功能恢复,为运动障碍患者提供了帮助。然而,持续存在的会话间差异性挑战带来了重大障碍,每次使用时都需要耗时的校准。除此之外,当前设备的低舒适度进一步限制了它们的使用。为了应对这些挑战,我们提出了一种综合解决方案,将基于 CNN 的微型迁移学习 (TL) 方法与舒适的可穿戴 EEG 头带相结合。这种新型可穿戴 EEG 设备在头带上放置了柔软的干电极,并能够进行机载处理。我们获取了多个会话的运动 EEG 数据,并使用 TL 实现了高达 96% 的会话间准确度,大大缩短了校准时间并提高了可用性。通过每 100 毫秒在边缘执行一次推理,该系统估计可实现 30 小时的电池寿命。舒适的 BMI 设置配有微型 CNN 和 TL,为未来的设备持续学习铺平了道路,这对于解决会话间差异和提高可用性至关重要。索引术语 — 脑机接口、EEG、可穿戴医疗保健、可穿戴 EEG、深度学习、迁移学习
背景和客观。基于事件相关电位(ERP)的大脑计算机接口(BCI)是在辅助环境中替代和增强通信的有前途的技术。但是,迄今为止的大多数方法都是同步的,当用户希望将注意力转移到BCI系统时,要求主管的干预。为了将这些BCIS带入现实生活中,通过监视用户注意力,需要对系统进行强大的异步控制。尽管这种限制非常重要,这阻止了这些系统在实验室外的部署,但在研究文章中通常会忽略它。这项研究的目的是提出一种新的方法来解决这个问题,在此上下文中第一次深入学习,以克服基于手工制作的特征的先前策略的局限性。方法。基于EEG启动,提出的方法是一种新型的深层卷积神经网络,将问题分为两个阶段以实现异步控制:(i)模型检测用户的控制状态,(ii)仅在用户参与刺激的情况下才能解码命令。此外,我们使用转移学习来减少校准时间,甚至探索无校准方法。结果。我们的方法通过22个健康受试者进行了评估,分析了校准时间和刺激序列对系统性能的影响。此外,我们的无校准方法也取得了合适的结果,最大精度为89.36%,显示了转移学习的好处。结论。对于控制状态检测阶段,我们仅使用1个刺激序列和30次校准试验报告平均精度以上91%,最高为96.95%,使用15个序列。至于包括两个阶段的整体异步系统,最大信息传输速率为35.54 bpm,是高速通信的合适值。拟议的策略通过校准试验和刺激序列比以前的方法较少,这是一个有希望的步骤,为基于ERP的拼写者的更实际应用铺平了道路。
摘要 — 使用迁移学习来训练脑机接口 (BCI) 解码算法有助于减少校准时间、提高准确性、降低过度拟合风险并允许应用需要大量数据的机器学习方法,例如深度神经网络。在本文中,我们提出了一种受黎曼几何最新进展启发的迁移学习方法。该方法通过 Procrustes 分析在源和目标数据集的切线空间中对齐向量。我们将该方法应用于公开的 P300-BCI 数据库。我们表明,使用我们的方法可以重用来自其他受试者的数据来传输信息。与最先进技术相比,我们获得的分类准确性表明使用迁移学习方法可以清晰地传输信息。
给药 • 抽取和给药 Gallium Ga 68 Gozetotide 注射液时,请使用无菌技术和辐射屏蔽。 • 根据校准时间和所需剂量计算所需给药量。 • 给药前,目视检查 Gallium Ga 68 Gozetotide 注射液中是否有颗粒物和变色。仅使用清澈、无色或最多略带黄色且没有可见颗粒的溶液。 • Gallium Ga 68 Gozetotide 注射液可以用无菌 0.9% 氯化钠注射液 USP 稀释。 • 在给患者给药前立即使用剂量校准器测定最终剂量。 • 注射 Gallium Ga 68 Gozetotide 注射液后,用无菌 0.9% 氯化钠注射液 USP 进行静脉冲洗,以确保完全输送剂量。 • 按照适用法规以安全的方式处理任何未使用的药物。 • 除非有禁忌症,否则可以在注射放射性示踪剂时使用预计在吸收时间内起作用的利尿剂,以潜在地减少放射性示踪剂在膀胱和输尿管中积累造成的伪影。
摘要 - 基于运动图像(MI)的脑部计算机界面(BCI)显示出有希望的运动恢复结果,术中意识检测或辅助技术控制。但是,由于脑电图(EEG)信号的高度可变性,它们主要是每次使用日期所需的冗长而乏味的校准时间,并且缺乏所有用户的可靠性,因此它们遭受了几个限制。可以使用转移学习算法在某种程度上解决此类问题。但是,到目前为止,此类算法的性能已经非常可变,何时可以安全地使用它们。因此,在本文中,我们研究了MI-BCI数据库(30个用户)上各种最先进的Riemannian转移学习算法的性能:1)受到监督和不受监督的转移学习; 2)对于目标域的各种可用培训脑电图数据; 3)会议内或会议间的转移; 4)对于Mi-BCI表演良好且较不愉快的用户。从此类实验中,我们得出了有关何时使用哪种算法的准则。重新介绍目标数据后,该目标集的几个样本被考虑在内。即使对于课内转移学习也是如此。同样,重新介入对于在会话之间难以产生稳定的运动图像的受试者特别有用。
客观,通过图像指导技术改善床旁神经外科手术程序安全性和准确性的主要障碍是缺乏针对移动患者的快速部署,实时的注册和跟踪系统。这种缺陷解释了外部室排水的徒手放置的持续性,该室外排水口具有不准确定位的固有风险,多次通过,流血出血以及对邻近脑实质的伤害。在这里,作者介绍并验证了无框立体神经纳维加菌和导管放置的新型图像登记和实时跟踪系统。方法使用计算机视觉技术来开发一种几乎连续,自动和无标记的图像注册的算法。该程序融合了受试者的预处理CT扫描中的3D摄像头图像(快照表面),并且通过人工智能驱动的重新校准(Real-Track)进行了患者运动。计算了5个发生串行运动(快速,缓慢的速度滚动,俯仰和偏航运动)的5个尸体头部的表面注册误差(SRE)和目标注册误差(TRE),以及几个测试条件,例如有限的解剖学暴露和不同的受试者照明。使用模拟的无菌技术将六个导管放在每个尸体头(总计30个位置)中。过程后CT扫描允许比较计划的和实际导管位置,以进行用户错误计算。的结果注册对于所有5个尸体标本都成功,导管放置的总体平均值(±标准偏差)SRE为0.429±0.108 mm。TRE的精度在1.2毫米以下保持在1.2 mm的范围内,整个标本运动的低速和高速滚动,俯仰和偏航的速度最高,重新校准时间最慢,为0.23秒。当样品被覆盖或完全不覆盖时,SRE没有统计学上的显着差异(p = 0.336)。在明亮的环境与昏暗的环境中进行注册对SRE没有统计学上的显着影响(分别为p = 0.742和0.859)。对于导管放置,平均TRE为0.862±0.322 mm,平均用户误差(目标和实际导管尖端之间的差异)为1.674±1.195 mm。结论这个基于计算机视觉的注册系统提供了对尸体头的实时跟踪,其重新校准时间少于四分之一的一秒钟,并具有亚毫升准确性,并启用了毫米准确性的导管放置。使用这种指导床旁心室造口术可以减少并发症,改善安全性并将其推断到清醒,非肌化患者中的其他无框立体定向应用。
摘要:基于事件相关电位 (ERP) 的 EEG 视觉脑机接口 (BCI) 的可用性得益于减少 BCI 操作前的校准时间。线性解码模型(例如时空波束形成器模型)可实现最先进的精度。尽管该模型的训练时间通常很短,但它可能需要大量的训练数据才能达到功能性能。因此,BCI 校准会话应该足够长以提供足够的训练数据。这项工作为波束形成器权重引入了两个正则化估计器。第一个估计器使用交叉验证的 L2 正则化。第二个估计器通过假设 Kronecker-Toeplitz 结构协方差来利用有关 EEG 结构的先验信息。使用包含 21 名受试者的 P300 范式记录的 BCI 数据集验证了这些估计器的性能,并将其与原始时空波束形成器和基于黎曼几何的解码器进行了比较。我们的结果表明,引入的估计器在训练数据有限的情况下条件良好,并提高了对未见数据的 ERP 分类准确性。此外,我们表明结构化正则化可以减少训练时间和内存使用量,并提高分类模型的可解释性。
摘要。胶质母细胞瘤是一种高度侵略性的脑肿瘤,由于预后不良和发病率高,构成了重大挑战。偏微分方程的模型通过模拟患者特异性肿瘤行为来改善放射疗法计划,提供了有希望的潜力来增强治疗结果。但是,由于蒙特卡洛采样和进化算法等优化方法的高计算授权,模型校准仍然是瓶颈。为了解决这个问题,我们最近引入了一种方法,该方法利用了具有基于梯度的优化的神经向前求解器,以显着减少校准时间。此方法需要高度准确且完全可区分的远期模型。我们研究了多个架构,包括(i)增强的肿瘤,(ii)修饰的NNU-NET和(iii)3D Vision Transformer(VIT)。优化的肿瘤酸盐取得了最佳的总体结果,在肿瘤轮廓匹配和体素级别的肿瘤级预测中都表现出色。它相对于基线模型减半,并在所有肿瘤细胞浓度阈值中达到了最高的骰子得分。我们的研究表明,向前求解器绩效的提高,并概述了重要的未来研究方向。我们的源代码可在https://github.com/zeinebzh/ tumornetsolvers
摘要:脑电信号相邻通道之间存在相关性,如何表示这种相关性是目前正在探索的问题。另外,由于脑电信号的个体间差异,这种差异导致新受试者需要花费大量的校准时间进行基于脑电的运动想象脑机接口。为了解决上述问题,我们提出了一种基于动态域自适应的深度学习网络。首先,将脑电数据映射到三维几何空间,通过3D卷积模块学习其时空特征,然后利用空间通道注意机制加强特征,最后的卷积模块可以进一步学习特征的时空信息。最后,为了考虑受试者间和跨会话的差异,我们采用了动态领域自适应策略,通过引入最大均值差异损失函数来减少特征之间的距离,并利用部分目标域数据对分类层进行微调。我们在BCI竞赛IV 2a和OpenBMI数据集上验证了所提方法的性能。在受试者内实验下,在OpenBMI和BCIC IV 2a数据集上获得了70.42±12.44和73.91±11.28的准确率。