摘要 — 使用迁移学习来训练脑机接口 (BCI) 解码算法有助于减少校准时间、提高准确性、降低过度拟合风险并允许应用需要大量数据的机器学习方法,例如深度神经网络。在本文中,我们提出了一种受黎曼几何最新进展启发的迁移学习方法。该方法通过 Procrustes 分析在源和目标数据集的切线空间中对齐向量。我们将该方法应用于公开的 P300-BCI 数据库。我们表明,使用我们的方法可以重用来自其他受试者的数据来传输信息。与最先进技术相比,我们获得的分类准确性表明使用迁移学习方法可以清晰地传输信息。
主要关键词