越来越多的房主选择使用光伏 (PV) 系统和/或电池存储来最大限度地减少能源费用并最大限度地利用可再生能源。这刺激了高级控制算法的开发,以最大限度地实现这些目标。然而,在开发此类控制器时面临的一个共同挑战是无法准确预测家庭用电量,尤其是对于较短的时间分辨率(15 分钟)和数据效率较高的情况。在本文中,我们分析了迁移学习如何通过利用来自多个家庭的数据来改善单个房屋的负荷预测。具体来说,我们使用来自多个不同家庭的数据来训练一个高级预测模型(时间融合转换器),然后在数据有限(即只有几天)的新家庭上微调这个全局模型。获得的模型用于以 15 分钟的时间分辨率预测家庭未来 24 小时(未来一天)的用电量,目的是将这些预测用于模型预测控制等高级控制器中。我们通过使用真实家庭数据,展示了这种迁移学习设置相对于仅仅使用单个新家庭数据的优势,包括(i)预测准确性(MAE 减少约 15%)和(ii)控制性能(能源成本减少约 2%)。