摘要:基于事件相关电位 (ERP) 的 EEG 视觉脑机接口 (BCI) 的可用性得益于减少 BCI 操作前的校准时间。线性解码模型(例如时空波束形成器模型)可实现最先进的精度。尽管该模型的训练时间通常很短,但它可能需要大量的训练数据才能达到功能性能。因此,BCI 校准会话应该足够长以提供足够的训练数据。这项工作为波束形成器权重引入了两个正则化估计器。第一个估计器使用交叉验证的 L2 正则化。第二个估计器通过假设 Kronecker-Toeplitz 结构协方差来利用有关 EEG 结构的先验信息。使用包含 21 名受试者的 P300 范式记录的 BCI 数据集验证了这些估计器的性能,并将其与原始时空波束形成器和基于黎曼几何的解码器进行了比较。我们的结果表明,引入的估计器在训练数据有限的情况下条件良好,并提高了对未见数据的 ERP 分类准确性。此外,我们表明结构化正则化可以减少训练时间和内存使用量,并提高分类模型的可解释性。
主要关键词