1个技术灾难的例子包括1986年的切尔诺贝利核事故,2011年由地震和海啸引起的2011年福岛核电站灾难以及2020年贝鲁特港口的武器店的爆炸。2个受位移影响的社区(DAC)包括居住在发生内部流离失所的地区的任何人,可能包括IDP,主持人社区成员,难民,返回者,前战斗人员或其他人的生活条件受到IDP的影响。该术语鼓励一种基于社区和基于区域的流离失所的方法。
核和放射性紧急情况的紧急准备和反应(EPR)框架适应不断发展的世界。设想EPR的未来包括预期新兴的威胁和危害,并采用新技术来增强我们的响应能力。本国际会议将讨论成员国和国际组织如何考虑这些因素以最大化其EPR效率,可持续性和韧性。尽管发展,维持和加强核和放射学EPR安排的责任取决于成员国的国家当局,但IAEA在培养国际EPR核和放射性紧急情况方面发挥了核心作用。国际原子能机构为EPR制定了指导,该指导为会员国提供了开发和维持强大的EPR安排的参考。该指南涵盖了核和放射学EPR的所有领域。这包括在IAEA安全标准中概述的理解和实施最新概念和原则方面的支持;在紧急练习的设计,进行和评估方面的帮助;以及对国家和地区能力建设项目的技术支持。本次会议符合此任务。IAEA的事件和急诊中心(IEC)于2005年成立,是由任何原因或组合引起的任何核和放射学事件或紧急事件的准备和响应的全球焦点,例如自然事件,人为错误,机械或其他失败或核安全事件。IEC支持成员国履行其国内和国际承诺和义务,包括根据《核事故的早期通知公约》(早期通知公约)和《核事故或放射性紧急公约》(援助公约)(援助公约)的援助公约。
核和放射性紧急情况的紧急准备和反应(EPR)框架适应不断发展的世界。设想EPR的未来包括预期新兴的威胁和危害,并采用新技术来增强我们的响应能力。本国际会议将讨论成员国和国际组织如何考虑这些因素以最大化其EPR效率,可持续性和韧性。尽管发展,维持和加强核和放射学EPR安排的责任取决于成员国的国家当局,但IAEA在培养国际EPR核和放射性紧急情况方面发挥了核心作用。国际原子能机构为EPR制定了指导,该指导为会员国提供了开发和维持强大的EPR安排的参考。该指南涵盖了核和放射学EPR的所有领域。这包括在IAEA安全标准中概述的理解和实施最新概念和原则方面的支持;在紧急练习的设计,进行和评估方面的帮助;以及对国家和地区能力建设项目的技术支持。本次会议符合此任务。IAEA的事件和急诊中心(IEC)于2005年成立,是由任何原因或组合引起的任何核和放射学事件或紧急事件的准备和响应的全球焦点,例如自然事件,人为错误,机械或其他失败或核安全事件。IEC支持成员国履行其国内和国际承诺和义务,包括根据《核事故的早期通知公约》(早期通知公约)和《核事故或放射性紧急公约》(援助公约)(援助公约)的援助公约。
定义微电子学 让我们从定义微电子学开始。微电子学是电子学的一个子领域,支持几乎所有国防部活动,实现全球定位系统、雷达、指挥和控制以及通信等功能。微电子学有很多种类型,但在国防方面最常讨论的是三种:专用集成电路 (ASIC)、现场可编程门阵列 (FPGA) 和片上系统 (SoC)。 专用集成电路 (ASIC) ASIC 是为特定功能而非通用用途定制的集成电路。ASIC 广泛应用于国防、通信和工业领域。一些例子包括消费电子产品、通信设备和抗辐射空间系统。 滚动文本:抗辐射加固:使电子元件和电路能够抵抗高水平电离辐射造成的损坏或故障的过程,特别适用于太空环境、核反应堆周围或核事故或核战争期间。现场可编程门阵列 (FPGA) FPGA 是一种集成电路,设计为在制造完成后由客户或设计人员进行配置。这就是它被称为现场可编程的原因。FPGA 适用于国防、通信和工业领域。以下是一些示例:航空、通信、成像系统和空间系统(经辐射加固)。滚动文本:辐射加固:使电子元件和电路能够抵抗高水平电离辐射造成的损坏或故障的过程,特别适用于太空环境、核反应堆周围或核事故或核战争期间。片上系统 (SoC) SoC 是利用计算机或电子设备的许多或所有组件的集成电路。SoC 可用于各种计算功能。一些示例包括移动计算设备,例如平板电脑、智能手机和嵌入式系统。
A. 一般规定 自第五次报告 - 2019 年和 2022 年期间以来,摩尔多瓦共和国继续执行《核安全公约》的规定以及在执行多项国际文书框架内作出的承诺。 1.1 历史 《核安全公约》于 1998 年 2 月 26 日对摩尔多瓦共和国生效。摩尔多瓦共和国也是《核材料实物保护公约》及其修正案、《核事故及早通报公约》、《核事故或辐射紧急情况援助公约》、《维也纳核损害民事责任公约》、《乏燃料管理安全联合公约》和《放射性废物管理安全联合公约》的缔约国。此外,摩尔多瓦共和国自 2005 年起成为非约束性国际法案的一部分 - 《放射源安全和安保行为准则》及其相关的《放射源进出口导则》。摩尔多瓦共和国继续高度重视核安全,并支持国际原子能机构(IAEA)在此领域的政策。核安全不仅仅是国家利益的问题,因为后果可能产生跨境影响(全国约有7座核电站),与乌克兰战争相关的现有威胁和挑战,疫情对国家层面和区域国家经济的影响,因此摩尔多瓦共和国试图积极参与旨在规范或协调核安全活动的各种国际文书。 1.2 现状 摩尔多瓦共和国没有核电站和研究反应堆,也没有计划在不久的将来引入核能作为发电或任何研究手段的选择。尽管摩尔多瓦共和国根据《核安全公约》的定义没有核设施,但我国被邻国的核电站所包围:罗马尼亚、保加利亚和
表 III:主要仪器类别概述.................................................................................................250 表 IV1:α 发射体...................................................................................................................253 表 IV2:β 发射体...................................................................................................................253 表 IV3:γ 发射体.........................................................................................................................254 表 IV4:Ge 能谱仪测量的光谱中的背景γ 线....................................................257 表 IV5:γ 线:按能量列出....................................................................................................258 表 IV6:γ 能谱测定中可能出现的干扰....................................................................262 表 IV7:不同核事故中释放的特征放射性核素....................................................................264 表 IV8:反应堆事故释放中的特征 γ 发射体.............................................................................265 表 VI:反应堆事故中的油.............................................................................................................267
序言 本文件是 EPA 辐射和室内空气办公室 (ORIA) 的几项举措之一,旨在为放射分析实验室提供指导,以支持 EPA 在放射性或核事故后的响应和恢复行动。本指南研究了在正常运行期间和放射性事故后通过伽马射线光谱法对样品的分析。本文件提供的样品筛选和分析指南应有助于那些在应对放射性或核事故时面临大量此类样品挑战的联邦、州和商业放射分析实验室。本文件适用于不同类型的事件:放射性运输事故、放射性散布装置 (RDD 或“脏弹”)、核电站紧急状态的泄漏、简易核装置 (IND) 的爆炸、其他潜在的放射性泄漏以及正常的实验室操作。这些样品将被不同程度的放射性核素污染,并代表不同成分的基质。国家和地区响应小组以及放射实验室的提前规划对于确保不间断地处理大量放射性样品以及快速周转和报告符合与保护人类健康和环境相关的数据质量目标的结果至关重要。正如《国家响应框架》和《核/放射事件附件》中所述,EPA 的职责包括响应和恢复行动,以检测和识别放射性物质以及协调联邦放射监测和评估活动。关于推荐的放射分析实践的详细指导可以在《多机构放射实验室分析协议手册》(MARLAP)中找到,该手册根据项目特定要求为项目规划人员、管理人员和放射分析人员提供详细的放射分析指导(www.epa.gov/radiation/marlap/links.html)。熟悉 MARLAP 的第 2、3、14、15 和 18-20 章将对本指南的用户大有裨益。本文件是一系列文件之一,旨在向放射分析实验室人员、事故指挥官(及其指定人员)和其他现场响应人员介绍实验室关键操作注意事项和可能的放射分析要求、决策路径以及放射或核事故后采集的样本分析的默认数据质量和测量质量目标。目前完成的文件包括: 全国性重大事故放射实验室样本分析指南 - 水中放射性核素(EPA 402-R-07-007,2008 年 1 月) 全国性重大事故放射实验室样本分析指南 - 空气中的放射性核素(EPA 402-R-09-007, 国家重大事件放射实验室样品筛选分析指南 (EPA 402-R-09-008,2009 年 6 月) 参与事件响应活动的放射实验室所使用的资格方法的方法验证指南 (EPA 402-R-09-006,2009 年 6 月) 实验室指南 – 放射或核事件响应核心操作的识别、准备和实施 (EPA 402-R-10-002,2010 年 6 月)
发生化学、放射性或核事故后,决策者需要快速、可靠且可追溯的数据,以便做出保护公众和环境的关键决策。在急救人员进入受灾建筑物并开始净化之前,必须建立对空气中化学或放射性污染物浓度和污染源的远程控制初步测量。在事故条件下获取这些数据对于监测人员来说可能很复杂且危险。因此,需要开发新型、无人值守和自主监测设备以及确保数据准确性的基础测量基础设施,以协助事故决策者。应预计与工业合作伙伴、监管机构和标准化机构的直接合作,以促进所开发技术的采用。关键词
发生化学、放射性或核事故后,决策者需要快速、可靠且可追溯的数据,以便做出保护公众和环境的关键决策。在急救人员进入受灾建筑物并开始净化之前,必须建立对空气中化学或放射性污染物浓度和污染源的远程控制初步测量。在事故条件下获取这些数据对于监测人员来说可能很复杂且危险。因此,需要开发新型、无人值守和自主监测设备以及确保数据准确性的基础测量基础设施,以协助事故决策者。应预计与工业伙伴、监管机构和标准化机构的直接合作,以促进所开发技术的采用。关键词
发生化学、放射性或核事故后,决策者需要快速、可靠且可追溯的数据,以便做出保护公众和环境的关键决策。在急救人员进入受灾建筑物并开始净化之前,必须建立对空气中化学或放射性污染物浓度和污染源的远程控制初步测量。在事故条件下获取这些数据对于监测人员来说可能很复杂且危险。因此,需要开发新型、无人值守和自主监测设备以及确保数据准确性的基础测量基础设施,以协助事故决策者。应预计与工业伙伴、监管机构和标准化机构的直接合作,以促进所开发技术的采用。关键词