FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行安全关键且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用越来越受到全世界的关注,主要用于反应堆保护系统 (RPS)。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)等数字设备。但是基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要一个操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行对安全至关重要且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用,尤其是反应堆保护系统 (RPS),受到全世界越来越多的关注。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用数字设备,例如 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)。但是,基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行对安全至关重要且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用,尤其是反应堆保护系统 (RPS),受到全世界越来越多的关注。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用数字设备,例如 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)。但是,基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行对安全至关重要且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用,尤其是反应堆保护系统 (RPS),受到全世界越来越多的关注。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用数字设备,例如 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)。但是,基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本文件提供了指导审阅者将可编程逻辑控制器 (PLC) 应用于核反应堆的控制、监控和保护的建议。首先讨论的主题是系统级设计问题,具体包括安全性。然后,该文件讨论了有关 PLC 制造组织和保护系统工程组织的担忧。本文件有两个附录作为补充。附录 A 总结了 PLC 特性。具体讨论了使 PLC 比其他电气/电子系统更适合紧急关闭系统的特性,以及提高系统可靠性的特性。还介绍了可能造成不安全操作环境的 PLC 特性。附录 B 概述了在紧急关闭系统中使用可编程逻辑控制器的情况。目的是让读者熟悉将 PLC 应用于 ESD 系统的设计、开发、测试和维护阶段。每个阶段都进行了详细描述,并指出了与 PLC 应用相关的信息。
本文件提供了一些建议,以指导审阅者将可编程逻辑控制器 (PLC) 应用于核反应堆的控制、监控和保护。首先讨论的主题是系统级设计问题,具体包括安全性。然后,该文件讨论了有关 PLC 制造组织和保护系统工程组织的问题。本文件补充了两个附录。附录 A 总结了 PLC 的特性。特别介绍了使 PLC 比其他电气/电子系统更适合紧急停机系统的特性,以及提高系统可靠性的特性。还介绍了可能造成不安全操作环境的 PLC 特性。附录 B 概述了可编程逻辑控制器在紧急停机系统中的使用。目的是让读者熟悉将 PLC 应用于 ESD 系统的设计、开发、测试和维护阶段。每个阶段都进行了详细描述,并指出了与 PLC 应用相关的信息。
本文件提供了一些建议,以指导审阅者将可编程逻辑控制器 (PLC) 应用于核反应堆的控制、监控和保护。首先讨论的主题是系统级设计问题,具体包括安全性。然后,该文件讨论了有关 PLC 制造组织和保护系统工程组织的问题。本文件补充了两个附录。附录 A 总结了 PLC 的特性。特别介绍了使 PLC 比其他电气/电子系统更适合紧急停机系统的特性,以及提高系统可靠性的特性。还介绍了可能造成不安全操作环境的 PLC 特性。附录 B 概述了可编程逻辑控制器在紧急停机系统中的使用。目的是让读者熟悉将 PLC 应用于 ESD 系统的设计、开发、测试和维护阶段。每个阶段都进行了详细描述,并指出了与 PLC 应用相关的信息。
[1] eDditional办公室,“用于调查核事故的灾难管理机器人的开发”,《灾难研究杂志》,第3卷,第4期,第4页,305-306,2008年8月。[2] Tomoharu doi,Mitsuyoshi Shimaoka,Shigekazu Suzuki,“由技术学院或Kosen教育工作者构想的创意机器人大赛”,《机器人和机械学杂志》,第34卷,第34卷,第34页,第3页,第498-508-508-508-508-508,20222222222.[3] Kenjiro Obara,Satoshi Kakudate,Kiyoshi Oka,Akira Ito,Toshiaki Yagi和Morita Yosuke,“ iTer远程维护的辐射硬度组件的开发”,《机器人和机械学杂志》,《杂志[4] Andrew West,Jordan Knapp,Barry Lennox,Steve Walters,Stephen Watts,“一台小COTS单板计算机用于移动机器人的辐射公差”,核工程和技术,第54卷,第54页,第54页。2198-2203,2022年12月。[5] Zhangli Liu,Zhiyuan Hu,Zhengxuan Zhang,Hua Shao,Hua Shao,Ming Chen,Dawei Bi,Dawei Bi,Bingxu Nig,Ru Wang,Shichang Zou,Shichang Zou,“全部剂量效应在高压记忆力和方法中,核工具和方法” pp.3498-3503,2010年9月。[6] Zhangli Liu Zhiyuan Hu, Zhengxuan Zhang, Hua Shao, Ming Chen, Dawei Bi, Bingxu Ning, Shichang Zou, “Comparison of TID response in core, input/output and high voltage transistors for flash memory,” Microelectronics Reliability, Vol.51, pp.1148-1151, March 2011.[7] Bingxu ning,Zhengxuan Zhang,Zhangli Liu,Zhiyuan Hu,Ming Chen,Ming Chen,Dawei Bi,Shichang Zou,“辐射诱导的浅沟裂缝隔离泄漏在180-NM FLSH内存技术中”[8] Sandhya Chandrashekhar,Helmut Puchner,Jun Mitani,Satoshi Shinozaki,Satoshi Shinozaki,Mohamed Sardi,David Hoffman,“辐射在16 nm浮动大门SLC SLC NAND闪光灯中诱导软沟,Microelectronics Reliaics Reliaics Reliaics”,第108卷,第11331页,第8页。