基本物理常数控制高能颗粒物理和天文学中的关键作用,包括颗粒的稳定性,核反应,恒星的形成和演化,重核的合成以及稳定的分子结构的出现。在这里,我们表明,典型常数还为凝结物阶段的声子频率设定了上限,或者在这些阶段中原子振动的速度速度。这种结合与原子氢和高温氢化物超导体的依次模拟一致,这意味着在凝分物质中对超导过渡温度t c的上限。基本常数将此限制设置为10 2-10 3 k的顺序。此范围与我们从最佳Eliashberg函数的T C计算一致。作为推论,我们观察到,当前发现t c在300 K处和以上的研究的存在是由于观察到的基本常数值所致。我们最终讨论了基本常数如何影响其他效果和现象的可观察性和操作,包括相变。
一个世纪前放射性的发现开辟了科学领域的新领域,即原子核。40 年后,人们发现了核裂变,并发现了核武器和核反应堆的实际影响。这仍然是新闻媒体关注的焦点,因为它影响着国际政治和国家能源政策。然而,核科学对我们的日常生活贡献更大,因为它已经渗透到几乎每一个重要领域,有时以开创性的方式,有时为旧问题提供全新的解决方案:从宇宙历史和我们的文明到食品生产方法,再到我们从年轻到老年的健康。这是一个不断发展的迷人领域。核化学是其中的一个重要部分。本书的主题源于化学和核科学。由于每种化学元素都可以具有放射性,并通过这种特性进行化学反应,因此放射化学对大多数化学领域都有贡献。根据恩斯特·卢瑟福的定义,核化学包括通过核反应引起的所有元素组成变化。我们只是根据这本书的内容来定义放射化学和核化学,这本书主要是为化学家编写的。内容包括基础章节,然后是应用章节。每章以练习(附答案)和文献参考结束
2。HOMO和异核分子中的结构和键合,包括分子的形状(VSEPR理论)。3。酸和碱的概念,硬柔软的酸碱概念,非水溶剂。4。主要组元素及其化合物:同种异体,合成,结构和粘结,化合物的工业重要性。5。过渡元素和协调化合物:结构,键合理论,光谱和磁性,反应机制。6。内部过渡元素:光谱和磁性特性,氧化还原化学,分析应用。7。有机金属化合物:合成,键合和结构以及反应性。均质催化中的有机金属。8。笼子和金属簇。9。分析化学分离,光谱,电和热器分析方法。10。生物素有机化学:照片系统,卟啉,胆汁酶,氧运输,电子转移反应;氮固定,医学中的金属络合物。11。通过IR,Raman,NMR,EPR,Mossbauer,UV-VIS,NQR,MS,电子光谱和微观技术来表征无机化合物。12。核化学:核反应,裂变和融合,放射分析技术和激活分析。
硼中子俘获疗法是一种癌症联合疗法,利用适当能量的外部中子束和优先集中在患者肿瘤组织中的含 10B 药物。中子和硼核之间的核反应产生一个 α 粒子和一个反冲 7 Li 核,对肿瘤细胞造成高度局部损伤。这一概念虽然简单,由 G. Locher 于 1936 年首次提出,但事实证明实施起来具有挑战性,需要真正的多学科团队。过去的一个困难是,全世界只有很少的中子源具有足够的强度和硼中子俘获疗法所需的能量。唯一合适的中子源是研究反应堆,分布在世界各地的大学和政府实验室。研究反应堆不是临床环境,虽然进行了许多临床试验,一些中心报告了令人鼓舞的结果,但治疗的患者数量很少,不同中心的结果比较并不简单。 2001年,国际原子能机构发布了《中子俘获疗法现状》(IAEA-TECDOC-1223),总结了以反应堆源为基础的中子俘获疗法领域的现状。
为了理解 MMO 在促进恢复力以及评估和治疗战斗和作战应激伤亡方面的作用,首先必须考虑人类应激反应背后的基本原理。人类应激反应系统的作用是在外部威胁和环境变化的情况下维持体内平衡。它通过在威胁面前引发“战斗、逃跑或冻结”等保护性行为来实现这一点。应激反应系统还促进快速回忆过去的威胁信息。在极端压力下,这些反应和回忆系统会产生与威胁不成比例的行为和症状。参与应激反应的主要大脑系统包括杏仁核、海马体和前额叶皮层。1 这些区域都处理感官信息,但处理方式和速度不同。杏仁核从丘脑接收直接感官输入并快速识别威胁。在威胁面前,杏仁核会产生适当的战斗、逃跑或冻结反应信号。海马体和前额叶皮层接收相同的感官信息,但这些大脑区域的通路速度较慢,旨在整合额外的记忆和背景信息。在健康、无压力的个体中,这些通路调节或抑制杏仁核反应。长期或极端的
目的 . 罕见低分化NUT中线癌(NMC)是一种高度恶性肿瘤。但由于NMC罕见,关于其临床、影像学和病理特征的报道仍然很少。方法 . 本研究以3例位于腮腺、肺和气管的NMC患者为例,总结NMC的临床病理特征。所有病例均通过双色FISH检测后检测NUT抗体核反应阳性进行诊断,结果均为阳性,提示NUT基因15q14发生染色体重排。结果 . 这3例患者均接受了手术治疗和放化疗等常规治疗。鉴于常规强化治疗效果不佳,建议使用两种新型疗法,即组蛋白去乙酰化酶抑制剂 (HDACi) 和溴结构域抑制剂 (BETi),因为两者都可以抑制肿瘤细胞的生长,这些靶向疗法可能会延长患者的生存时间。结论。NMC 是一种容易误诊且预后不良的癌症;因此,提高临床医生的认识对于提高诊断准确性至关重要,选择有效的治疗方法是改善预后的主要方法。
摘要:核热推进 (NTP),尤其是固体核推进,被认为是太空推进技术进步的一个相当显著的例子。与普通化学火箭不同,NTP 系统使用核裂变来加热氢气或其他推进剂,从而实现比化学火箭更好的效率和比冲,使 NTP 系统适合长时间的太空任务。本文详细介绍了固体核 NTP 系统,包括其工程设计,例如核反应堆堆芯、推进剂流动和推进剂排气喷嘴。它解决了 NTP 系统设计中的重要工程问题,例如能够在反应堆内运行的高温材料、辐射屏蔽、氢存储,以及可用于解决每个问题的一些方法。它还包括 NTP 系统的缺点和反驳,例如运输时间和有效载荷容量,特别是在火星、深空和外层空间沉积大质量物体的任务中。最后,本文探讨了现有的努力和进一步研究的目标,重点关注材料、混合推进系统的发展以及与其他国家合作的能力,以加快 NTP 推进进展的速度,并最终将其用于未来的太空探索。
简介:核热推进 (NTP),尤其是固体核推进,被认为是太空推进技术进步的一个相当显著的例子。与普通化学火箭不同,NTP 系统使用核裂变来加热氢气或其他推进剂,从而实现比化学火箭更好的效率和比冲,使 NTP 系统适合长时间的太空任务。本文详细介绍了固体核 NTP 系统,包括其工程设计,例如核反应堆堆芯、推进剂流动和推进剂排气喷嘴。它解决了 NTP 系统设计中的重要工程问题,例如能够在反应堆内运行的高温材料、辐射屏蔽、氢存储,以及可用于解决每个问题的一些方法。它还包括 NTP 系统的缺点和反驳,例如运输时间和有效载荷容量,特别是在火星、深空和外层空间沉积大质量物体的任务中。最后,本文探讨了现有的努力和进一步研究的目标,重点关注材料、混合推进系统的发展以及与其他国家合作的能力,以加快 NTP 推进进展的速度,并最终将其用于未来的太空探索。
1。phl-502纳米系统物理PEC 4 3 1 0 3 0 2。phl-504纤维和非线性光学元件PEC 4 3 1 0 3 0 3。phl-505量子光学pec 4 3 1 0 3 0 4。PHL-508超弦理论PEC概论4 3 1 0 3 0 5。phl-510高级特征技术PEC 4 3 1 0 3 0 6。phl-511原子和分子碰撞物理PEC 4 3 1 0 3 0 7.PHL-513天体物理PEC 4 3 1 0 3 0 8。phl-514太阳 - 物理物理PEC 4 3 1 0 3 0 9.PHL-515一般相对论PEC 4 3 1 0 3 0 10.PHL-516计算核物理PEC 4 3 1 0 3 0 11。phl-517粒子物理PEC 4 3 1 0 3 0 12。phl-521天气预报PEC 4 3 1 0 3 0 13。phl-522核仪器PEC 4 3 1 0 3 0 14。phl-523薄膜的物理和技术PEC 4 3 1 0 3 0 15。phl-524高级核反应PEC 4 3 1 0 3 0 16。phl-525半导体光子学PEC 4 3 1 0 3 0 17。phl-526高级光源PEC 4 3 1 0 3 0 18.phl-527粒子加速器的超导射频PEC 4 3 1 0 3 0 19.phl-528高级冷凝物理物理PEC 4 3 0 3 3 0 20。phl-529先进的大气物理PEC 4 3 0 3 3 0 21。PHL-530高级激光物理PEC 4 3 0 3 3 0 22。PHL-531高级核物理PEC 4 3 0 3 3 0 23。PHL-532高级量子场理论PEC 4 3 1 0 3 0 24。PHL-533量子计算许多身体系统PEC 4 3 1 0 3 0
摘要 — 高能电子与物质相互作用产生的辐射簇射包括能量分布峰值为 MeV 级的中子,这些中子是通过光核反应产生的,可以测量电子设备中中子诱导的单粒子效应 (SEE)。在这项工作中,我们研究了一种装置,其中欧洲核子研究中心 [Centre Européen pour la Recherche Nucléaire (CERN)] 的 CLEAR 加速器的 200 MeV 电子束被引导到铝靶上以产生具有大中子分量的辐射场。通过测量特性良好的静态随机存取存储器 (SRAM) 中的单粒子翻转 (SEU) 和闩锁率以及被动式无线电光致发光 (RPL) 剂量计中的总电离剂量 (TID),并将结果与 FLUKA 模拟的预测进行比较,对由此产生的环境进行了分析。我们发现,用铅制成的横向屏蔽可保护 SRAM 免受过高的 TID 率影响,从而为 SEU 测量提供最佳配置,尤其是在对 MeV 级中子高度敏感的 SRAM 中。相对于基于散裂靶或放射源的标准中子设施,此设置提供了一种有趣的补充中子源。