电力的基本原理如何产生电力是将其他形式的能量转化为电流。发电机在1831年,迈克尔·法拉迪(Michael Faraday)对电力和磁性的实验导致了第一个发电机。在发电机中,机械能通过在电线线圈内旋转磁铁而变为电能。磁铁的北极和南极之间的力线被线圈中的电线切割,这会在线圈本身中产生电流。电站中使用的电磁力是由许多覆盖的铜线缠绕在铁芯周围的。磁铁称为转子,线圈为定子。需要某种形式的机械能,例如蒸汽,水,气或风的运动才能保持磁铁的转动。这是通过将移动蒸汽,水,气或风的机械力应用到连接到轴的涡轮轮的机械力来完成的,后者又连接到磁铁。南非大多数现代电力站的煤炭电力,煤炭被燃烧以加热水并将其转化为蒸汽。蒸汽被定向到涡轮机的叶片上,使其旋转。又,这又旋转了线圈内的磁转子以产生电力。一旦蒸汽通过涡轮机,就必须冷却并冷凝。冷却过程将蒸汽转回水中,以便将其泵回锅炉进行加热。在锅炉中,它将再次变成蒸汽,并将重新启动周期。许多埃斯科姆的燃煤电站都建在煤矿旁边。将煤从矿山运到陆上传送带上的发电站。这节省了时间和金钱,并有助于降低电力成本。在核电站的情况下,原子的电力不是通过燃烧煤来加热水,而是通过核反应中释放的热量来加热水。通过控制铀原子的分裂速率可以增加或减少热量。这是通过所谓的“控制杆”来完成的,该功能与汽车的加速器的方式相似,这会导致汽车加速或减速。由高度纯化的水和硼组成的“主持人”,在初级电路中循环,也有助于控制反应性。主电路的热量被转移到单独的二级电路中,其中水变成蒸汽。使用第二电路中的水加热产生的蒸汽用于以与燃煤电站完全相同的方式旋转涡轮机。然后将蒸汽冷凝并返回以重复使用。
电的基本原理 电是如何产生的 电的产生就是将其他形式的能量转换成电流。 发电机 1831 年,迈克尔·法拉第通过电和磁的实验,发明了第一台发电机。在发电机中,通过旋转线圈内的磁铁,机械能被转化为电能。磁铁的南北极之间的力线被线圈中的导线切割,从而在线圈本身中产生电流。 发电站使用的电磁铁由缠绕在铁芯上的多圈包覆铜线制成。磁铁称为转子,线圈称为定子。 需要某种形式的机械能(例如蒸汽、水、气体或风的运动)来保持磁铁转动。这是通过将移动的蒸汽、水、气体或风的机械力施加到连接到轴的涡轮叶轮上来实现的,而轴又连接到磁铁。 煤炭发电 在南非的大多数现代发电站中,煤炭被燃烧以加热水并将其转化为蒸汽。蒸汽被直接喷射到涡轮叶片上,使涡轮叶片旋转。这又使线圈内的磁转子旋转以产生电能。蒸汽通过涡轮后,必须进行冷却和冷凝。冷却过程将蒸汽重新变成水,以便将其泵送回锅炉重新加热。在锅炉中,蒸汽将再次变成蒸汽并重新开始循环。 Eskom 的许多燃煤发电站都建在煤矿旁边。煤炭通过陆上传送带从矿井运输到发电站。这节省了时间和金钱,并有助于降低电力成本。 来自原子的电能 在核电站中,水不是通过燃烧煤炭加热的,而是由核反应释放的热量加热的。通过控制铀原子分裂的速率可以增加或减少热量。这是通过所谓的“控制棒”来实现的,其功能类似于汽车油门使汽车加速或减速的方式。一种由高度纯化的水和硼组成的“慢化剂”在一次回路中循环,也有助于控制反应性。一次回路的热量被转移到单独的二次回路,水在这里被转化为蒸汽。二次回路中加热水产生的蒸汽用于以与燃煤发电站完全相同的方式旋转涡轮机。然后蒸汽被冷凝并返回再利用。
保留所有权利。本文档的内容如有变更,恕不另行通知。建议客户在订购前咨询销售代表。本文档中提供的信息(例如功能描述和应用电路示例)仅供参考,以展示富士通半导体设备的操作和使用示例;富士通半导体不保证根据此类信息使用设备时设备能够正常运行。当您根据此类信息开发包含设备的设备时,您必须承担因使用此类信息而产生的任何责任。富士通半导体对因使用此类信息而造成的任何损害不承担任何责任。本文档中的任何信息,包括功能描述和示意图,均不应被视为对任何知识产权(如专利权或版权)或富士通半导体或任何第三方的任何其他权利的使用或行使的许可,富士通半导体也不保证使用此类信息不会侵犯任何第三方的知识产权或其他权利。富士通半导体对因使用本文所含信息而导致的对第三方知识产权或其他权利的任何侵犯不承担任何责任。本文档中描述的产品是为一般用途而设计、开发和制造的,包括但不限于普通工业用途、一般办公用途、个人用途和家庭用途,但不为以下用途而设计、开发和制造:(1) 伴随致命风险或危险的使用,除非确保极高的安全性,否则可能对公众造成严重影响,并可能直接导致死亡、人身伤害、严重物理损坏或其他损失(即核设施中的核反应控制、飞机飞行控制、空中交通管制、公共交通控制、医疗生命支持系统、武器系统中的导弹发射控制),或 (2) 需要极高可靠性的使用(即潜水中继器和人造卫星)。请注意,对于因上述产品使用而产生的任何索赔或损害,富士通半导体不对您和/或任何第三方承担任何责任。任何半导体设备都有固有的故障可能性。本文中的公司名称和品牌名称是其各自所有者的商标或注册商标。您必须在设施和设备中采用安全设计措施,例如冗余、防火、防止过流和其他异常操作条件,以防止此类故障造成的伤害、损坏或损失。本文件中描述的任何产品的出口/发布可能需要根据日本《外汇和对外贸易管理法》和/或美国出口管制法的规定采取必要的程序。
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
地壳经过数百万年的演变才变成今天的样子。矿物和岩石的形成需要很长时间。矿物是获取金属、非金属材料和能源所必需的自然资源。矿物被归类为不可再生资源,因为它们一旦用完就无法再生或自我补充。它们的数量是固定的,这意味着它们的可用性是有限的。地壳包含两种类型的矿物:燃料矿物和非燃料矿物。燃料矿物包括煤炭、石油和石油等化石燃料,这些矿物的形成需要数百万年的时间。非燃料矿物分为金属(铜、铝、铁)和非金属(石膏、磷酸盐岩)。人类开发这些资源的速度是决定它们能持续多久的重要因素。据统计,平均每人每年消耗约 40,000 吨矿物。按照这种消耗速度,估计煤炭可以使用约 200-300 年,天然气可以使用 125 年,铁可以使用 62 年,铜可以使用 36 年。风能被认为是一种可再生资源,因为它可以在相对较短的时间内自然补充,可以可持续使用而不会枯竭。相比之下,矿物等不可再生资源的数量有限,或者需要数百万年才能形成和补充,一旦耗尽,它们就无法持续使用。可再生资源包括风能、太阳能、水能和农产品,它们可以按季节或年度再生。另一方面,不可再生资源是煤炭和石油等化石燃料,它们需要数百万年才能形成,并且不会在人类的时间内补充。鉴于可再生资源和不可再生资源之间的区别,公司投资风能是因为其清洁的特性,并受到政府的激励。为了可持续地管理矿物,回收至关重要,因为它减少了开采新矿物的需要。理解这一差异的关键在于补充率与人类消耗率的对比。可再生资源的自然恢复速度与人类使用速度相当或更快,而不可再生资源的数量有限或需要很长时间才能补充。可再生能源:太阳能、风能、水力发电、生物质能、地热能、潮汐能、波浪能、生物燃料和环境热能利用自然现象产生的能量。不可再生资源包括煤炭、原油、天然气、核能(尽管一些核反应理论上是可再生的)、矿物、金属矿石、磷酸盐、稀土元素和沙子。一些资源在技术上是可再生的,但在可持续性方面存在局限性。例如,水在其自然循环中被认为是可再生的,通过蒸发、凝结和沉淀补充淡水资源。然而,像地下水过度使用、污染、气候变化和干旱这样的情况,和地理限制会使水资源实际上变得不可再生能源。太阳能、风能、水力发电、生物质能、地热能、潮汐能、波浪能和生物燃料等可再生能源都是从自然界中获取的。这些资源提供清洁能源,对环境的影响比不可再生能源小。不可再生能源包括煤炭、原油、天然气、核能、泥炭、油页岩、焦油砂(沥青)、柴油、丙烷和煤油。这些资源的开采、加工和燃烧会向环境中释放温室气体和污染物。可再生能源和不可再生能源之间的主要区别包括:1. **环境影响**:可再生能源对环境的影响较小,而不可再生能源则会带来严重的污染和温室气体排放。2. **成本**:尽管可再生技术的成本最初很高,但会随着时间的推移而降低。由于环境破坏和健康影响,不可再生能源通常伴随着更高的长期成本。3. **基础设施要求**:可再生能源需要在风电场或太阳能电池板等基础设施上进行大量的前期投资。相比之下,不可再生能源虽然已经建立了基础设施,但在开采和运输方面却面临挑战。虽然可再生能源为更清洁的能源未来带来了希望,但有些情况可能并不环保。例如,如果不进行可持续管理,生物质能可能会导致森林砍伐和碳排放增加。大型水电项目破坏生态系统并迫使社区流离失所。此外,太阳能电池板和风力涡轮机的生产涉及可能对环境产生影响的材料和工艺。可再生能源既有优点也有缺点。一方面,它们提供可持续和取之不尽的资源,降低温室气体排放,减少对化石燃料的依赖,并有可能创造当地就业机会。然而,它们的实施成本高昂,而且可能会出现间歇性问题,例如太阳能在夜间无法产生。另一方面,不可再生能源在许多情况下提供可靠且持续的能源供应、成熟的基础设施和较低的初始投资。然而,从长远来看,它们是有限的和不可持续的,导致严重的环境污染和温室气体排放,并因污染而对人类构成健康风险。可再生资源和不再生资源之间的选择很复杂,需要仔细考虑各种因素,包括环境影响、成本、基础设施需求和技术进步。树干可以被砍伐,锯成木板,然后作为废料留下。这些废料可以用作燃料,制作如图所示的木板或动物垫料。这些都是树木采伐的副产品。另一种产品是用于花园的树皮覆盖物,可再生资源来自树皮。空气和水也是自然资源,它们可以自然再生,在流动过程中循环往复。它们使用后不会再生,而是一直存在于环境中。除此之外,还有另一种可再生资源——阳光或风能等永不枯竭的能源。营养物质是生命所必需的,它们不断得到补充,并随着每个生物体的生命周期而循环。另一方面,地下发现的不可再生资源包括石油、煤炭和天然气等化石燃料,这些燃料在人的一生中无法替代,需要数百万年才能形成。金属等矿物质也不能自然再生,会在制造过程中被消耗掉。我们将这两种自然资源用于日常需求——用木材和矿物建造的房屋、用棉花和油基材料制成的衣服、来自植物或动物的食物。识别这些物品的可再生和不可再生性质有助于我们认识到它们的重要性,并努力明智地保护它们。不要浪费或破坏自然资源,尤其是不可再生资源。即使是一些可再生资源,如果过度使用,也会耗尽。我们还必须保护它们免受污染。污染发生在人们将有害化学物质排放到大自然中时,比如石油泄漏或有毒空气。那么你能做什么呢?减少、再利用和回收!关灯以节省化石燃料,骑自行车而不是开车,再利用塑料袋或纸张等物品。回收也很重要——它是重新利用自然资源或产品来制造新的东西。一些易于回收的物品是玻璃、塑料、纸张、纸板、铝和钢。但是当你扔掉垃圾时,它会变成什么样子呢?它可能会进入垃圾填埋场,在那里它不会对环境产生影响。其他类型的垃圾可以进入焚化炉,将其烧成灰烬。一些有机废物进入堆肥堆,帮助它腐烂,然后用作肥料。你的垃圾从家到这些地方的旅程被称为废物流。自然资源对我们的未来至关重要。我们必须小心地保护它们。我们每天都会用到这两种自然资源——用木材和矿物建造的房屋、用棉花和石油基材料制成的衣服、来自植物或动物的食物。识别这些物品的可再生和不可再生性质有助于我们认识到它们的重要性,并努力明智地保护它们。不要浪费或破坏自然资源,尤其是不可再生资源。即使是一些可再生资源,如果过度使用也会耗尽。我们还必须保护它们免受污染。当人们将有害化学物质排放到大自然中时,就会发生污染,比如石油泄漏或有毒空气。那么你能做什么呢?减少、再利用和回收!关掉灯以节省化石燃料,骑自行车而不是开车,再利用塑料袋或纸张等物品。回收也很重要——它是重新利用自然资源或产品来制造新的东西。一些易于回收的物品是玻璃、塑料、纸张、纸板、铝和钢。但是当你扔掉垃圾时会发生什么呢?它可能最终被送到垃圾填埋场,在那里它不会对环境造成污染。其他类型的垃圾可以放入焚化炉,焚烧成灰烬。一些有机废物被放入堆肥堆,帮助其腐烂,然后用作肥料。垃圾从家里到这些地方的旅程被称为废物流。自然资源对我们的未来至关重要。我们必须小心保护它们。我们每天都会用到这两种自然资源——用木材和矿物建造的房屋、用棉花和石油基材料制成的衣服、来自植物或动物的食物。识别这些物品的可再生和不可再生性质有助于我们认识到它们的重要性,并努力明智地保护它们。不要浪费或破坏自然资源,尤其是不可再生资源。即使是一些可再生资源,如果过度使用也会耗尽。我们还必须保护它们免受污染。当人们将有害化学物质排放到大自然中时,就会发生污染,比如石油泄漏或有毒空气。那么你能做什么呢?减少、再利用和回收!关掉灯以节省化石燃料,骑自行车而不是开车,再利用塑料袋或纸张等物品。回收也很重要——它是重新利用自然资源或产品来制造新的东西。一些易于回收的物品是玻璃、塑料、纸张、纸板、铝和钢。但是当你扔掉垃圾时会发生什么呢?它可能最终被送到垃圾填埋场,在那里它不会对环境造成污染。其他类型的垃圾可以放入焚化炉,焚烧成灰烬。一些有机废物被放入堆肥堆,帮助其腐烂,然后用作肥料。垃圾从家里到这些地方的旅程被称为废物流。自然资源对我们的未来至关重要。我们必须小心保护它们。
尽管从未尝试过,但可以评估,同样的技术可以用于执行一些初步的火星载人任务[1, 2]。众所周知,要真正探索和殖民最近的天体,需要开发广泛的技术[3]——开发原地资源的技术、保护宇航员免受辐射的技术、在目的地星球上制造工厂的技术等——但需要直接与推进相关的新技术。特别是,必须使用核能而不是化学能来推动航天器。基于核裂变反应的核热推进和核电推进(NTP 和 NEP)两种替代方案都得到了详细研究,前者已经进行了台架测试,结果非常令人满意。 NTP 和 NEP 可以减少旅行时间(从而减少宇航员受到的宇宙辐射),同时降低低地球轨道初始质量 (IMLEO),从而使星际任务更加经济实惠,从而提高人类执行火星及更远星球任务的机会。NASA 设计参考架构 5 (DRA5) [3, 4] 报告了 NTP 和载人火星任务化学方法之间的有趣比较。此外,NEP 还可以显著改善化学推进,而上述两种核方法之间的选择主要取决于政治决策,即哪种技术可以发展到足够的技术就绪水平。上述两种核方法均基于裂变核反应 [5]。轻质结构和薄膜太阳能电池方面的最新进展使得人们可以考虑将太阳能电力推进 (SEP) 用于载人行星任务,尤其是首次载人火星任务。这是一种“过渡”解决方案,用于提高行星际航天器的性能,使其性能高于化学推进,同时等待 NTP 或 NEP 技术可用。通过将 SEP 的性能与化学推进和 NTP 的性能进行比较,IMLEO 方面的优势显而易见,而就 NEP 而言,它们仅取决于发电机的比重 α,短期内这对太阳能电池阵列比对核发电机更有利。从长远来看,后者会好得多,但开发 SEP 意味着为载人飞行任务开发高功率电推进器,以便在轻型核发电机可用时它们已准备就绪。无论如何,毫无疑问,要成为真正的太空文明,我们必须开发基于核聚变的火箭发动机 [6, 7]。使用聚变能进行航天器推进的想法由来已久 [8]。对于聚变推进,有两种替代方案:类似于 NTP 和聚变 NEP。在过去的 20 年里,许多研究都致力于核聚变发电的总体发展,尤其是核聚变火箭的发展。核聚变 NEP 需要开发轻型核聚变反应堆,而这在今天看来似乎是一项艰巨的任务。此外,这里的重点仍然只是发电机的比重 α,而核聚变发电机的 α 值要比裂变发电机更好还需要很多年 [9],更不用说今天还没有出现过即使 α 值很高的核聚变发电机。在核聚变 NEP 中,α 值越低,比冲的最佳值就越高,因此即使有了轻型发电机,也需要做大量工作来改进电推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的开发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量以及低辐射航天器推进系统。最简单的聚变驱动器类型是使用小型不受控制的热核爆炸来推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,而 D-3He 直接聚变推进器似乎是可以在中期内实现太阳系殖民的推进器。虽然与 DFD 相关的大多数研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速前往火星和小行星带的任务。结果表明,核聚变推进是开启太阳系殖民和建立太阳系经济的有利技术。本文的结构如下:在第二部分中,我们描述了推进器及其主要特性。第三部分专门考虑了地球 - 火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分讨论了前往 16 Phyche 小行星的任务,最后是结论要使聚变发电机的 α 值优于裂变发电机还需要很多年 [9],更何况目前还没有可用的聚变发电机,哪怕它的 α 值非常高。在聚变 NEP 中,α 值越低,比冲的最优值就越高,所以即使有了轻型发电机,也需要做大量工作来改进电力推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的研发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。 DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论要使聚变发电机的 α 值优于裂变发电机还需要很多年 [9],更何况目前还没有可用的聚变发电机,哪怕它的 α 值非常高。在聚变 NEP 中,α 值越低,比冲的最优值就越高,所以即使有了轻型发电机,也需要做大量工作来改进电力推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的研发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。 DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论