1 德国电子同步加速器 DESY,Platanenallee 6,15738 Zeuthen,德国 2 亚琛工业大学,Templergraben 55,52062 Aachen,德国 3 欧洲核子研究中心,1211 Geneva 23,瑞士 4 洛桑联邦理工学院 (EPFL) 物理研究所,1015 Lausanne,瑞士 5 麻省理工学院理论物理中心、量子优势协同设计中心和 NSF AI 人工智能与基本相互作用研究所,77 Massachusetts Avenue,Cambridge,MA 02139,美国 6 塞浦路斯研究所基于计算的科学和技术研究中心,20 KavafiStreet,2121 Nicosia,塞浦路斯 7 数学科学系,巴斯大学 West 4 号,Claverton Down,Bath BA2 7AY,英国 8 柏林洪堡大学物理研究所,Newtonstr. 15,12489 柏林,德国
1 德国电子同步加速器 DESY,Platanenallee 6,15738 Zeuthen,德国 2 亚琛工业大学,Templergraben 55,52062 Aachen,德国 3 欧洲核子研究中心,1211 Geneva 23,瑞士 4 洛桑联邦理工学院 (EPFL) 物理研究所,1015 Lausanne,瑞士 5 麻省理工学院理论物理中心、量子优势协同设计中心和 NSF AI 人工智能与基本相互作用研究所,77 Massachusetts Avenue,Cambridge,MA 02139,美国 6 塞浦路斯研究所基于计算的科学和技术研究中心,20 Kavafi Street,2121 Nicosia,塞浦路斯 7 巴斯大学数学科学系,4 West,Claverton Down,Bath BA2 7AY,英国8 柏林洪堡大学物理学研究所,Newtonstr。 15, 12489 柏林, 德国
本月,我们被甚大望远镜的精彩图像所吸引,甚大望远镜是欧洲南方天文台的一项令人惊叹的装置,登上了封面,文章和随附的照片一样鼓舞人心。我们还在本期收集了一系列“第一”。欧洲核子研究中心新任总干事 Fabiola Gianotti 的第一篇观点,以及第一篇关于新提议的 SHiP 设施的文章,该设施旨在探索隐藏的世界。两位研究人员必须使用声化技术(在粒子物理学中众所周知)来开发研究身体马达的新调查方法,这个想法也属于“第一”的范畴。除了大量的专题报道外,我们还拥有丰富的新闻文章,发表了有关反物质和核物理的新信息。要订阅新问题提醒,请访问:http://cerncourier.com/cws/sign-up。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的恢复与破缺完美地体现在共振参数和密度分布随势深的演变中:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
1. 简介 量子信息论 (QIT) 是经典信息论的量子扩展。它为量子计算、量子通信、量子计量等领域发现了新的强大的信息资源。尽管量子信息技术的应用领域很广,但我们对 QIT 的理解远远落后于完全发展的自然量子理论,即量子场论 (QFT)。QFT 已在从粒子核物理到原子、光学和凝聚态物理、从夸克和核子到黑洞和早期宇宙等所有物理科学领域证明了其有效性和价值。到目前为止,量子信息论主要是在非相对论量子力学的背景下发展起来的,而非相对论量子力学只是成熟 QFT 的一小部分。当需要考虑局部性、因果关系和时空协方差等基本相对论效应时,它显然是不够的。认识到这些相对论效应的重要性,并寻求理解它们在量子信息中发挥的重要作用,开创了相对论量子信息(RQI)这一新兴领域[2]。
MICHELE GROSSI 1、NOELLE IBRAHIM 2、VOICA RADESCU 3、ROBERT LOREDO 4、KIRSTEN VOIGT 5、CONSTANTIN VON ALTROCK 6 和 ANDREAS RUDNIK 7。1 欧洲核子研究组织 (CERN),瑞士日内瓦 1211(电子邮件:michele.grossi@cern.ch)2 IBM Quantum,IBM 3600 Steeles Ave East Markham,ON L3R 9Z7,CA(电子邮件:noel.ibrahim@ibm.com)3 IBM Quantum,IBM Deutschland Research & Development GmbH,Schönaicher Str. 220, 71032 Böblingen, 德国(电子邮件:voica.radescu@ibm.com) 4 IBM Quantum, IBM Corp, 1 Alhambra Plaza Suite #1415 Coral Gables, FL 33134(电子邮件:loredo@us.ibm.com) 5 IRIS Analytics GmbH, Klostergut Besselich, 56182 Urbar, 德国(电子邮件: kirsten.voigt@iris.de) 6 IRIS Analytics GmbH,Klostergut Besselich,56182 Urbar,德国(电子邮件:constantin.von.altrock@iris.de) 7 IRIS Analytics GmbH,Klostergut Besselich,56182 Urbar,德国(电子邮件:andreas.rudnik@iris.de)
30.1 理论宇宙射线 (CR) 是遍布宇宙的非热粒子群。它们的显著特征可以从其主要的观测特性中推断出来:光谱、成分和到达方向。对于带电 CR,能量从几十 MeV 到接近 1 ZeV,强度在 1 GeV 以上为 ∼ 104 m − 2 s − 1 sr − 1,但差分谱随能量 E 急剧下降,遵循幂律依赖性 E − γ。最显著的光谱特征是在几个 PeV 处的“膝盖”,其中谱指数 γ 从 ∼ 2.7 变为 ∼ 3,“第二个膝盖”在 ∼ 100 PeV 处变为 ∼ 3.3 和在几个 EeV 处的“脚踝”,γ 变为 ∼ 2。 5. 通量在几十 EeV 以上被大大抑制。(有关光谱特征的更详细讨论可参见下文第 30.2.1 和 30.2.2 节。)带电 CR 主要由质子、氦和其他原子核以及电子、正电子和反质子组成。到达方向大多是各向同性的,但在膝点以下和周围,由于源的分布和银河系磁场的特性,观察到有趣的 O(10-4...10-3)各向异性,在最高能量下达到 ∼O(10-1)。伽马射线可分解为来自天体物理源的伽马射线(50 MeV 以上约 6660 [ 1 ],TeV 能量下约 300 [ 2 , 3 ]),以及来自银河系和河外星系的弥散通量,主要表现出对能量的幂律依赖性。高能中微子的观测打开了一扇新的窗户;虽然分布基本上是各向同性的,但已经发现了两个河外星系源以及来自银河系平面的贡献的证据。带电 CR、弥散伽马射线和中微子的能谱如图 30.1 所示。对带电宇宙射线、伽马射线和中微子以及引力波的综合观测(见第 21.2.3 节)为我们了解最极端的天体物理环境提供了有价值的见解,这被称为多信使天体物理学。将所有物种的贡献相加,可得到全粒子谱。虽然长期以来人们认为它是一个没有特征的幂律,直到几个 PeV 的膝盖,但现在人们认识到它具有更多的结构,反映了各个物种的特征。这些特征包含有关宇宙射线加速和传输的重要信息。使用的能量变量是动能 E,即每个核子的动能,对于质量数为 A 的粒子,E n = E/A,或对于电荷数为 Z 的粒子,刚度 R ≡ pc/ ( Ze )(以伏特为单位),p 是粒子的动量;术语“刚度”是指在磁场 B 中抵抗偏转的能力:刚度低(高)的粒子具有小(大)的回旋半径 rg = R /B 。动能与量热仪器的实验特征密切相关,而刚度则是光谱仪器最自然的特征。还要注意,相对论性原子核的能量损失很小,它们的传输由磁场决定,因此它只取决于刚度。核子强度 J 也称为弥散通量,是通过能量在区间 [ E, E + d E ] 内的粒子的微分数 d N 来定义的,这些粒子在时间 dt 内从立体角 d Ω 穿过面积 d A:d N = J d E d A d Ω dt 。其各向同性部分与微分密度 ψ = (4 π/v ) J 有关,v 为粒子速度,与相空间密度 f 有关,即 J = p 2 f 。注意,强度也可以根据每个核子的粒子能量或刚度来定义。为了强调这一点,强度通常写为 d J/ d E 、d J/ d En 或 d J/ d R 。在探测 CR 方面,有两类技术 [ 4 ]。直接观测(见第 30.2.1 节)利用粒子物理探测器(例如跟踪器、光谱仪和量热仪)中的 CR 相互作用。鉴于此类仪器的曝光有限且光谱急剧下降,目前仅在低于 ∼ 100 TeV 时才切合实际。在间接观测(见第 30.2.2 节)中,
基于我们广泛的世界领先研究,我们提供灵活且引人入胜的学位,让我们的学生能够充分体验该学科的魅力。通过项目工作、课外活动和开放政策,我们提供独特而包容的学习体验,学位课程和途径随着学科的前沿不断发展。我们的部门在科学和社会中发挥着重要的积极作用,并与欧洲核子研究中心、激光干涉引力波天文台和萨德伯里中微子天文台等国际机构的同事一起为获得诺贝尔奖的研究做出了贡献,发现了新的星系,创下了低温记录,或创造了新材料和量子设备。我们超越传统研究,以有影响力的方式应用物理学,例如,我们重新利用软件来预防森林火灾,应用识别技术来协助救灾,并定期为社区提供外展活动。在所有这些活动中,我们的学生都有很多机会参与其中。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的守恒与破缺在共振参数和密度分布随势深的演变中完美地展现出来:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
我们报告了量子和经典机器学习技术之间的一致比较,这些技术应用于对矢量玻色子散射过程的信号和背景事件进行分类,该过程在欧洲核子研究中心实验室安装的大型强子对撞机上进行研究。基于变分量子电路的量子机器学习算法在免费提供的量子计算硬件上运行,与在经典计算设施上运行的深度神经网络相比,表现出非常好的性能。特别是,我们表明这种量子神经网络能够正确地对信号进行分类,其特征曲线下面积 (AUC) 非常接近使用相应的经典神经网络获得的特征曲线下面积 (AUC),但使用的资源数量要少得多,训练集中的可变数据也较少。尽管这项工作是在有限的量子计算资源下给出原理证明的演示,但它代表了