背景:罐头食品可能被微生物污染,主要是孢子形成细菌。本研究旨在提供有关通过伊拉克易卜拉欣·哈利尔国际边界进口的罐头食品的微生物负载的信息。方法:总共有119种包括35种家禽肉,40条鱼类和44种番茄酱的罐头食品样本,从易卜拉欣·哈利尔国际边界收集。使用常规方案,评估样品的总板数(有氧和厌氧微生物),变质的致病性和大肠菌菌生物。通过单向方差分析(ANOVA)起诉GraphPad Prism(V.5.01),对获得的结果进行了分析。结果:在37°C孵育时的总有氧板数为1.30±0.2 log sumoning单位(CFU)/g,鱼类的1.32±0.3 log cfu/g,番茄酱占2.11±0.5 log log cfu/g。另一方面,在肉样品中的厌氧板计数为0.95±0.2 log cfu/g,鱼类的1.08±0.2 log cfu/g,西红柿的评分为0.95±0.2 log cfu/g。枯草芽孢杆菌,肠分裂芽孢杆菌,灌注梭状芽胞杆菌和克雷伯氏菌属。。结论:比家禽肉类产品相比,西红柿和鱼类的微生物相对多。这些数据表明,加工线中的卫生标准差可能导致微生物控制损失。
ETEST ® 是一种手动定量技术,用于测定非苛养革兰氏阴性和革兰氏阳性需氧菌以及苛养菌的抗菌敏感性。该系统包含预定义的抗生素梯度,用于确定不同抗菌剂在琼脂培养基上过夜培养后对微生物的最低抑菌浓度 (MIC,以 μg/mL 为单位)。使用指征 ETEST ® IP 可用于测定亚胺培南对下列微生物的 MIC: • 需氧菌: ◦ 革兰氏阴性需氧菌:肠杆菌、假单胞菌、不动杆菌 ◦ 革兰氏阳性需氧菌:肠球菌 • 肺炎链球菌 • 厌氧菌: ◦ 革兰氏阴性厌氧菌:拟杆菌、梭杆菌 ◦ 革兰氏阳性厌氧菌:梭状芽孢杆菌、无芽孢革兰氏阳性杆菌、革兰氏阳性球菌
[背景与目的] 小肠是负责口服食物和药物的吸收和代谢的消化器官。近年来,有报道称利用由人类iPS细胞分化而来的肠上皮细胞(F-hiSIEC)作为评价人体小肠吸收情况的体外模型,结果显示其转运载体和代谢酶的表达比通常用于该评价的Caco-2细胞更接近人体。然而,其功能的许多方面仍然未知。本研究提高了通量,并将运输载体和代谢酶的功能与Caco-2细胞进行了比较。 [方法] 利用在96孔Transwell中培养的F-hiSIEC和Caco-2细胞,评估了模型化合物从顶端到基底(A到B)和从基底到顶端(B到A)方向的细胞膜通透性,并同时确认了代谢物的产生。
微生物感染通过多种策略介导癌症的起始和进展。这些策略包括刺激宿主炎症反应(感染介导的炎症),氧化性DNA/RNA损伤的上调以及活性氧(ROS)的产生(ROS),抑制宿主修复机制,以及不受控制的宿主细胞繁殖(1,2)。有几种细菌通过感染介导的炎症中介导癌症程序,例如幽门螺杆菌(H. Pylori),幽门螺杆菌,核细菌,核细菌,肠毒素B. fragilis,fragilis,fragilis,梭状芽孢杆菌,梭状芽孢杆菌,梭状芽孢杆菌和梭状芽孢杆菌和Faecalis肠oc骨(1,1,3)。H.幽门螺杆菌是一种革兰氏阴性杆菌,可引起胃癌,结肠癌和肠外癌(1)。幽门螺杆菌的发病机理包括以下途径;通过NF-κB刺激上调炎症信号通路,增加了DNA/RNA氧化损伤并抑制宿主修复途径,从而诱导上皮细胞增殖并抑制肿瘤抑制蛋白p53(1)。在本研究主题中,两项研究讨论了幽门螺杆菌感染的发病机理。Elbehiry等。 描述了幽门螺杆菌毒力因子在细菌发病机理中的作用,包括外膜蛋白(OMP),酶(例如过氧化酶和尿素酶)和毒素[例如吸泡细胞毒素基因(Vaca)和胞毒素相关基因A(CAGA)]。 Bawali等。 报道了细胞外囊泡连接在驱动炎症和胃肠道癌中的作用。 作者得出的结论是,EV研究和生物工程和OMV-OMV融合的进步Elbehiry等。描述了幽门螺杆菌毒力因子在细菌发病机理中的作用,包括外膜蛋白(OMP),酶(例如过氧化酶和尿素酶)和毒素[例如吸泡细胞毒素基因(Vaca)和胞毒素相关基因A(CAGA)]。Bawali等。报道了细胞外囊泡连接在驱动炎症和胃肠道癌中的作用。作者得出的结论是,EV研究和生物工程和OMV-OMV融合的进步幽门螺杆菌和宿主细胞衍生的细胞外囊泡(EV)的外膜(OMV)介导了幽门螺杆菌的致癌细胞毒素的转运,幽门螺杆菌,细胞毒素相关基因A(CAGA)。CAGA通过刺激IL-8和核因子-κB(NF-κB)降低宿主免疫反应,诱导胃粘膜炎症,并上调活性氧(ROS)。evs包含CAGA,到达全身循环,并将致癌因子传递到人体的远端部分。幽门螺杆菌的OMV通过影响肝细胞中的外泌体并刺激肝卫星细胞来诱导诸如肝纤维状疾病,例如肝纤维化。此外,幽门螺杆菌OMV与其他微生物OMV的融合(pH依赖性)可能是额外胃癌的致癌因子。
摘要研究了带有硅胶支持的上流厌氧反应器中细菌群落的演变,该反应堆不断地用纯甘油(第0-293天)和粗甘油(第294-362天)喂食。来自以前甘油降解反应堆的生物量用作接种物。用粗甘油获得了1,3-丙二醇(PDO)(PDO)(PDO)(PDO)(0.62 mol.mol-gly-Gly-1和14.7 G.l -1 .d -1)。接种物的多样性较低,乳酸杆菌(70.6%)和克雷伯氏菌/劳尔特拉(23.3%)的优势占主导地位。在用纯甘油喂养293天后,在附着的生物膜或生物量中生长的悬浮液中,两个分类单元的丰度均下降到小于10%。梭子座属和雷诺罗卡科家族的成员随后成为多数。在用粗甘油进食后的时期,梭状芽胞杆菌仍然是生物膜中的多数属。然而,它在悬浮液中部分替换为非甘油降解细菌的Eubacterium。这一事实以及生物膜中其他甘油降解属的流行率,例如磷酸胶产物和乳酸杆菌,表明附着在硅酮支撑上的细菌负责将甘油转化为1,3-PDO。因此,为了提高1,3-PDO的生产率,一种良好的方法是最大化反应堆支撑量。其他不降解甘油的属,例如厌氧菌和乙美环,以牺牲细胞衰减材料为代价。规范对应分析表明,甘油的起源是生物反应器操作期间要考虑的重要变量,用于产生1,3-PDO,而甘油加载速率却不是。
抽象目标已提出肠道菌群作为代谢性疾病的有趣治疗靶点。inulin作为益生元已被证明可减少肥胖症和相关疾病。当前研究的目的是研究干预前的肠道菌群特征是否决定了对肌蛋白的生理反应。设计来自四个肥胖供体的粪便在饮食干预之前被取样,并在饮食干预之前采样,并接种抗生素预处理的小鼠(Hum-ob小鼠;人类化的肥胖小鼠)。hum-ob小鼠用高脂饮食喂食,并用菊粉治疗。代谢和微生物群在hum-ob小鼠中的毒素治疗变化与在补充二氨基蛋白的肥胖个体中获得的hum-ob小鼠的变化进行了比较。结果我们表明,与来自不同肥胖个体的粪便菌群定居的Hum-ob小鼠在高脂饮食中对补充肌蛋白的补充有所不同。在几个细菌属中,巴氏菌,双毛虫,丁酸酯,维多瓦利斯,Xiva梭状芽胞杆菌,Akkermansi A,Raoultella和Blautia与观察到的代谢结果(肥胖和肝片的降低)相关。此外,在肥胖的个体中,anaerostipes,akkermansia和丁酸酯的干预前水平驱动了响应于肌蛋白的体重指数的减少。结论这些发现支持在益生元进行营养干预之前表征肠道微生物群,对于在肥胖和代谢性疾病的背景下增加积极结果很重要。
Murakami K,Hamazaki N,Hamada N,Nagamatsu G,Okamoto I,Ohta H,Nosaka Y,Semba Y,Hayashi K.在体外雄性小鼠的功能性卵母细胞的产生。 div>自然。 div>2023年3月; 615(7954):900-906。 doi:10.1038 / s41586-023-05834-x。 div>
行动目标(SBOS)1。它使您可以理解和解释细胞疗法和再生医学的当前状态。 2。可以理解和使用干细胞分离,培养和性状分析技术的原理。 3。它可以分析分子水平活生物体中干细胞的动力学和功能。 4。可以计划,进行研究,并根据文献提出结果。
任何仪器、设备、器具、软件、材料或其他物品,无论是单独使用还是组合使用,连同任何附件,包括制造商旨在专门用于诊断和/或治疗目的的软件,以及其正确应用所必需的软件,制造商旨在用于人类的以下目的: — 疾病的诊断、预防、监测、治疗或缓解, — 伤害或残疾的诊断、监测、治疗、缓解或补偿, — 解剖或生理过程的研究、更换或修改, — 受孕的控制,并且其在人体内或人体上的主要预期作用不是通过药理学、免疫学或代谢手段实现,但可以通过此类手段辅助其发挥作用