使用分阶段的阵列雷达用于空间情境意识提供了电子束转向和数字束形成的优势,从而可以在不同任务之间快速切换,例如形成搜索围栏和目标跟踪。通过德国实验空间监视和跟踪雷达盖斯特拉(Gestra),最近在弗劳恩霍夫(Fraunhofer)高频物理学和雷达技术研究所(Fhr)建造了一个系统。诸如Gestra之类的分阶段阵列雷达,由单独的接收器和发射器组成,可以启用准单位静态和偏爱操作模式。这种方法固有地提供了将Gestra扩展到多个,合作转移和接收单位网络的可能性。这样的系统会带来各种各样的机会,以提高空间监视的性能,同时鉴于信号处理和操作模式,也增加了方法论挑战。我们讨论了我们最近和正在进行的有关梯级雷达网络的调查,以进行太空监视,并根据Gestra报告即将实现此类系统的实现。
这项研究是一项多中心的,梯级楔形试验,对急诊医疗服务(EMS)环境中儿科患者的癫痫发作的剂量剂量。它将每个参与的EMS机构在20个不同地点的时间安排随机,以从基于体重的剂量转换为标准化的,基于年龄的剂量,以便每个EMS代理商在这项5年的研究中从常规剂量转换为4年的招生期。主要结果是在通过Ceribell设备测量的ED到达时抓住的。将使用知情同意书(EFIC)程序的联邦例外进行入学。启动:2022年11月PI:Matthew Hansen,协调员:Nick Patrick Cannifuly:患者的年龄≥6个月至≤13岁,并且有辅助人员的癫痫发作,需要运输到任何医院; ceribell对患者的分位≥2岁。排除:患者具有苯二氮卓史过敏的先前史;或已知或假定怀孕;或根据护理人员的评估具有严重的生长限制。状态:注册;注册:101;所有站点总数:2,804联系人:cprem@ohsu.edu,24小时线:503-494-1777
纤维素纳米纤维的高结构各向异性和胶体稳定性使在非常低的固体含量下创建自动立足的原纤维水凝胶网络。在节奏氧化的CNF的表面上添加甲基丙烯酸酯部分,可以通过自由基聚合物的自由基聚合物形成更有效的机械性能,从而形成更强大的共价交联网络。该技术产生强大而弹性的网络,但具有不确定的网络结构。在这项工作中,我们使用丙烯酸酯限制的远程技术聚合物,这些聚合物从PEG二丙酸酯和二硫代硫醇的梯级生长聚合中得出,以交联甲基甲基甲基丙烯酸酯氧化纤维素化的纤维素纳米纤维(MATO CNF)。通过流变学研究,压缩和拉伸负荷观察到,这种组合导致了柔性和强的水凝胶。发现这些水凝胶网络的结构和机械性能取决于CNF和聚合物交联的DI月经。通过SAXS(小角度X射线散射)和光影学评估了网络的结构和单个COM的作用。对混合CNF/聚合物网络的彻底了解,以及如何最好地利用这些网络的能力,使基于纤维素的材料在包装,软机器人和生物医学工程中的应用中进一步发展。
全球许多地区的淡水稀缺性在增加;为了满足这一需求,海水脱盐是最好的选择,由于城市化和工业化,电能消耗正在升级。可以通过与梯级太阳能静止(SSS)集成的光伏电压(PVT)模块来满足电力和淡水的可持续生产。本研究重点介绍了PVT-SSS海水淡化系统的理论建模,用于评估热效率,能源效率,淡水生产力和电力发电。太阳能静止的生产率将受到水的深度,隔热厚度,玻璃盖材料,厚度和倾斜度的影响,以及预热输入水供应和盐分等操作因素。对泰米尔纳德邦(Tamil Nadu)的Vellore Town(12.9165°N,79.1325°E)进行了比较分析(12.9165°N,79.1325°E)。在当前工作中,为PVT-SSS系统开发了基于质量和能量平衡的热力学模型,并通过数值方法解决。使用Python程序来解决热力学仿真模型,采用了第四阶的runge-kutta技术。该模型的结果描述了,在夏季,冬季和多雨的气候季节中,PV/T-SSS的淡水生产率确定为12.18 kg/m 2天,6.67 kg/m 2天和2.77 kg/m 2天。此外,还发现夏季,冬季和雨季的电效率分别为8.91%,9.135%和9.53%。分别观察到2 cm和5 cm的最大和最小淡水产生1668 kg/m 2和1218 kg/m 2。
在计算机科学和人工智能不断发展的景观中,模糊图理论和拓扑指数的整合为决策过程提供了强大的框架。模糊图,其特征是它们处理不确定性和不精确的能力,扩展了传统的图形概念,从而使复杂网络的更细微的表示。本研究探讨了模糊拓扑指数在梯子和网格图中的应用,这些阶梯和网格图是网络理论中的基础结构。梯子图,类似于梯子的梯级,以及代表网状结构的网格图,通过模糊图理论的镜头进行分析,以提取有意义的见解,有助于决策。模糊拓扑指数与这些图形结构的融合为评估网络鲁棒性,优化路线和增强整体系统可靠性提供了强大的工具。本文深入研究了传统拓扑指数的探索,例如randić索引以及模糊的拓扑指数和模糊的Zagreb索引,专门用于梯子和网格图。我们通过机器学习技术分析上述图表,并提供全面的统计分析。我们发现梯子和模糊阶梯图之间以及网格和模糊的网格图之间存在很强的相关性。我们的发现表明,如果已知梯形图和网格图中的拓扑索引的值,那么我们可以准确地预测梯形图和网格图的模糊拓扑索引的值。使用机器学习技术对清晰和模糊图中的拓扑指数进行分析是一种创新的方法,不仅可以节省时间,而且还提供了更全面,更精确的评估。
地下深度应从底部的底部到完成等级至少30英寸。的基础应在高程变化时进行阶梯阶段并连续。应将所有木地下表格删除以进行基础检查。基础高度应允许以下所有最低限度:1)30英寸以下的平台深度2)级别2)6英寸高于饰面3)7级级别的基础,完成的一般地下室天花板4)12英寸+ 2%+ 2%的街道上的街道上的街道上的加固钢的间距不得超过24英寸,除非计划或工程或工程或工程或工程。在所有基础开口的顶部都需要至少2#4的钢筋,延伸到开口前24英寸。将安装一个单个#4钢筋,将其安装到侧面和开口下。湿damp验证均需要将地下室封闭以下等级以下的所有基础。地下室,带有可居住的空间和每个卧室的窗户或窗户应符合以下窗户:地板44英寸内的成品窗台高度;最低净净明显开放面积为5.7平方米ft。最小开口宽度为20英寸,最小开口高度为24英寸。级地板开口可能具有最低净净开口的5平方英尺。(将等级定义为窗台开口不超过相邻成品的地面表面上方或下方的44英寸。)窗口井提供所需的出口窗口应与窗户所需的最小值保持尺寸:1)44英寸最大深度(或提供永久梯子梯级)2)36英寸从窗户正面到窗户正面的水平间隙。(9平方米ft。需要“地板面积”。)3)36“垂直间隙,从上述水平清除的任何投影(凸窗,悬臂,甲板等)在基础或基础上提供一个混凝土包裹的接地电极(UFER地面)。
所描述的过程涉及采用一个控制人类细胞中胰岛素产生并将其插入细菌的基因。这是基因工程的一个例子,涉及操纵生物体的DNA引入特定基因或修改现有基因。通过将人基因掺入细菌中,它获得了产生人胰岛素的能力。遗传工程涉及改变生物体的遗传物质以赋予其新特征。在这种情况下,控制胰岛素产生的基因取自人类细胞并插入细菌。细菌并未自然产生胰岛素,但是随着基因的增加,它现在可以这样做。这表明了如何使用基因来改变生物的特征。通过单击我们的徽标/名称旁边的“关注我”按钮,查看我们的思考大型学习TPT商店,以接收有关新产品,销售和更新的通知。#通过购买此文件,您同意我们的条款。所有权利由作者保留。此产品仅用于个人或课堂使用,不能以数字方式分发或显示用于公众视图。*遗传学和遗传互动笔记本 *染色体,基因,遗传学,性状,蛋白质,等位基因,核,同源对,Mendelian,Mendelian,纯合,杂合#遗传学和遗传笔记本交互作用提供79页的交互学习经验。它通过决定细胞中产生的蛋白质来控制蛋白质的合成。基因是遗传的基本单位,位于染色体上。It includes: * **24 Flip-Fold Vocabulary words & definitions** * **DNA Structure Explained** * **Base Pairs (Adenine, Guanine, Cytosine, Thymine)** * **Understanding Chromosomes** * **Understanding Genes** * **Understanding RNA** * **Location of Ribosomes & Nucleus Foldable** * **Dynamics of mRNA - tRNA - Ribomes ** ** **概念映射DNA ** ** ** Punnett Square ** ** ** ** x35研究好友卡(包括答案密钥)** DNA被称为生命的蓝图,因为它包含了生物体生长,发育,生存,生存和繁殖的说明。基因本质上是DNA的一部分,而染色体是DNA在细胞分裂之前折叠成的结构。每个人类体细胞都包含23对染色体,这些染色体具有所有代码为一个人的创造,生长和发育的基因。除了DNA外,这些染色体还含有组蛋白蛋白,可帮助将DNA包装到染色体中。在真核细胞中,在细胞核中发现了染色体,而在原核生物细胞中它们可以自由移动。DNA由字母 - 脱氧核糖核酸组成 - 地球上的所有生命都用作遗传密码。核酸是一种多核苷酸,由三个基本单元组成:磷酸盐基团,5个碳糖(五戊糖)和氮基碱。五个碳糖是脱氧核糖,并且由于多核苷酸链具有重复的磷酸盐和脱氧核糖单位,因此变异来自氮基碱 - 腺嘌呤,鸟嘌呤,胞嘧啶和胸骨。分子梯子的梯级由牢固的共价键将其固定在一起,糖分子与构成每个步骤的碱基相连。这些碱以特定的方式配对:腺嘌呤通过两种氢键与胸腺氨酸组合,而胞嘧啶与鸟嘌呤配对使用三个氢连接。遗传代码以这些基础的顺序编写,其中顺序很重要 - 仅交换一个基础可以更改整个消息。此代码由三胞胎组成,该三联体指示细胞创建特定的氨基酸,然后将其用于构建蛋白质。
水电 6,635.698 拉穆特水电项目 水电 拉穆特-阿西普洛小型水电公司 阿西普洛,伊富高省 6.800 2022 2022 皮纳卡纳万河水电项目 水电 Sunwest 水电公司 佩纳布兰卡,卡加延省 6.000 2023 2023 皮亚皮河水电项目 水电 Repower 能源开发公司 Real,奎松省 3.300 2023 2023 卡米林 1 水电项目 水电 Northgreen 能源公司 Mayantoc,塔拉克省 7.000 2023 2023 下锡福水电项目 水电 Asiapac 绿色可再生能源公司 纳托宁,山省 3.000 2024 2024 上锡福水电项目 水电 Asiapac 绿色可再生能源公司 纳托宁,山省 2.750 2024 2024 Matuno 1 水力发电项目 Hydro Smith Bell Mini-Hydro Corp. Ambaguio, 新比斯开 7.400 2024 2024 Matuno 2 水力发电项目 Hydro Aurora All Asia Energy Corporation Ambaguio, 新比斯开 15.000 2024 2024 Ibulao 1 水力发电项目 Hydro Kiangan Mini Hydro Corporation Kiangan,伊富高 6.750 2024 2024 Ibulao 2 水力发电项目 Hydro Ibulao Mini Hydro Corporation Kiangan, Ifugao 7.400 2024 2024 Coto 1 水力发电项目 Hydro Gedangan Enterprises Co. Masinloc, Zambales 9.000 2024 2024 Olilicon 水力发电项目 Hydro SN Aboitiz Power - 伊富高, Inc. 伊拉甘, 伊富高20.000 2024 2024 Chico River 水力发电项目 Hydro San Lorenzo Ruiz Builders & Developers Group, Inc. 塔布克,卡林加 52.000 2024 2024 Pasil B 水力发电项目 Hydro I-Magat 可再生能源公司 帕西尔,卡林加 15.684 2024 2024 Pasil C 水力发电项目 Hydro I-Magat 可再生能源公司 帕西尔,卡林加 9.754 2024 2024 Tignoan (Lower) 水力发电项目 Hydro Aurora All Asia Energy Corporation 雷亚尔,奎松 8.000 2024 2024 Pampang 水力发电项目 Hydro FDC 可再生能源公司 圣菲,新比斯开 26.000 2024 2024 Kabayan 2 水力发电项目 Hydro Aboitiz Power Corporation本格特 52.000 2025 2025 蒂诺克 1 水电项目水力发电厂 Clara Power Corp. 蒂诺克,伊富高省 3.000 2025 2025 蒂诺克 2 水电项目水力发电厂 Clara Power Corp. 蒂诺克,伊富高省 6.500 2025 2025 蒂诺克 3 水电项目水力发电厂Clara Power Corp. 蒂诺克,伊富高省 5.000 2025 2025 Ilaguen 水电项目水电 Isabela Power Corp. 埃查格,伊莎贝拉省 19.000 2025 2025 Bacolan 水电项目水电 Northgreen Energy Corporation 圣克莱门特,塔拉克省和 Mangatarem,邦阿西楠省 3.000 2025 2025 Coto 2 水电项目水电 Gedangan Enterprises Co. 马辛洛克,三描礼士省 3.500 2025 2025 Camiling River 3 水电项目水电 Northgreen Energy Corporation 玛扬托克,塔拉克省 4.200 2025 2025 Boga 水电项目水电 Kadipo Bauko 水电公司巴乌科山省 2.000 2025 2025 Lower Chico 水力发电项目 Hydro Kadipo Bauko 水力发电公司 Bauko, Mt. 省 2.100 2025 2025 Sablan 1 水力发电项目 Hydro Hedcor, Inc. Sablan 和 La Trinidad, Benguet 20.000 2025 2025 Calanan 水力发电项目 Hydro Violago 黄金开发公司 Tabuk 市, Kalinga 60.000 2025 2025 Dalimuno 水力发电项目 Hydro Violago 黄金开发公司 Tabuk 市, Kalinga 58.000 2025 2025 ARIIS 2 (NIA Stn 5+437.50) 水力发电项目 Hydro C Squared Prime Commodities Corporation San Manuel, Pangasinan 0.480 2025 2025 ARIIS 3 (NIA 站 5+898.50) 水力发电项目 Hydro C Squared Prime Commodities 公司 圣曼努埃尔,邦阿西楠省 0.480 2025 2025 ARIIS 1 (NIA 站 4+283) 水力发电项目 Hydro C Squared Prime Commodities 公司 圣曼努埃尔,邦阿西楠省 0.670 2025 2025 ARIIS 4 (站 4+808) 水力发电项目 Hydro C Squared Prime Commodities 公司 圣曼努埃尔,邦阿西楠省 0.680 2025 2025 Tumauini (上级梯级) 水力发电项目 Hydro Philnew Hydro Power Corp Tumauini,伊莎贝拉省 14.000 2025 1905
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。