1个微生物学,生物有机和大分子化学单元,药学学院,Univerélibrede Bruxelles(ULB),BOULEVARD du TRIOMPHE,1050 BRUSSELS,BELGIUM 2 BRUSSELS,BELGIUM 2 APPLIED MATIFIER Science,The Enginemering Sciences,Uppsala oppsala oppsala oppsala opp.sala opp.sala opp.Box 534,75121 Uppsala,瑞典3 Laboratoire de ParasitologieMoléCulaire,教师埃克斯科学和CMMI,Univerélibrede Bruxelles(ULB),CP 300。Rue教授Jeener&Brachet,12,6041 Gosselies,比利时4 4号材料与聚合物创新与研究中心,Materia Nova Research Center&Mons University,Belgium 5 Mons,Belgium 5 Mons,MONS,MONS 5特斯拉,卡拉·杜萨纳(Cara Dusana)62-64,11158塞尔维亚7号贝尔格莱德7号口腔健康系,iuliu hatieganu医学与药房,维克多·巴布斯街(Victor Babes Street瑞士10中心Inter-Universitaire de Recherche et d'nierie nieriedesMatériaux,Cirimat,Toulouse INP,Toulouse INP,UniversitétoulouseUnivers 3 Paul Sabatier,CNRS,CNRS,CNRS,Universitédede de de de de de toulouse,4个全部Emile Monso,Bp444362,ceedex 4,31030 tour tour tour tour in tour in tour in tour in tour tour in tour in for化学,巴布斯 - 布莱伊大学 - 罗鲁班瑞班,范塔内尔街30,400294罗马尼亚克鲁伊·纳波卡 *通信:veronique.fontaine@ulb.be
现代农业面临的挑战既包括粮食供应,也包括生物能源的获取,这些挑战是全球性的,包括因人口增长、饮食习惯改变和气候变化而导致的粮食需求增加。最大的挑战之一是实现产量的可持续增长,采用更好的农业实践并开发能够生产具有营养成分和质量的食品的品种,以及更能耐受不同类型的生物和非生物胁迫(DaMatta 等人,2010 年;Lobell;Gourdji,2012 年;McCouch 等人,2013 年;Eisenstein,2013 年;粮农组织,2019 年)。此外,耕地使用量的不断增加对森林砍伐造成了重大影响(Campbell et al.,2008)。
当前版本:Vision Transformer(DINOV2)→TOP1精度= 0.73先前版本:卷积神经网络(IV3)→TOP1精度= 0.70
硅(Si)越来越被公认为是一种有益的因素,可显着提高作物的生长和生产力,尤其是面对各种非生物和生物胁迫。其在应激条件下保护植物方面的作用以及改善植物的整体适应性,引起了研究人员和农艺学家的极大关注。值得注意的是,最近的研究表明,即使没有压力,SI也可以提供好处,这表明其以可持续的方式增强植物营养和生产力的潜力(Prado,2023; Verma等,2023)。通过缓解压力的不利影响和促进增长,SI有助于可持续的农业实践,与对环保农业解决方案的需求保持一致(Prado等,2024)。农作物中各个地区的营养疾病在全球各个地区都普遍存在,并且SI已被证明可以增强对降低的耐受性(Alves等,2024; Teixeira等人。; Silva等,2021; Teixeira等人,2021)以及毒性(Alves等,2023; SousaJúnior等,2022; Barreto等,2022)。这种双重能力使SI成为改善植物健康和农业弹性的关键组成部分。随着气候变化的影响加剧,干旱,盐度和冷应激等因素构成了对植物活力的显着威胁。这些压力源是由于农业实践不足和肥料成本上升而加剧了迫切需要采用提高作物生产力的策略,同时又将这种挑战降至最低,尤其是在农作物中(Verma等,2024年)。在过去的二十年中,科学界关于SI在土壤和植物系统中的作用的兴趣显着提高。迄今为止的研究发现很有希望,表明SI可以在不断变化的气候下有效缓解各种压力,并增强农业弹性,在我们对土壤植物相互作用所涉及的机制的理解方面取得了显着的进步。在这个专门的研究主题中,我们策划了一系列研究,这些研究深入研究了SI在增强土壤植物动力学中的多方面作用。一个重要的贡献是Teixeira等人的作品。,重点是SI在能量甘蔗中的作用。鉴于其可再生能源生产的潜力,能量甘蔗对于可持续农业实践至关重要。然而,该研究强调了碱性土壤中的铁缺乏症所带来的挑战。作者证明了SI增强了铁的吸收,从而提高了营养效率和光合作用,最终导致增加
该项目的目标是在农作物中建立合成遗传单元。具有完全合成基因组的植物可以可持续地提供丰富的产品和服务,从食品到材料、药物等等。迈向合成植物基因组的关键第一步是开发构建模块:在植物细胞中建立合成遗传单元,特别是合成染色体和合成叶绿体。该项目旨在设计、构建、交付和维护可在活体植物中存活的合成染色体和合成叶绿体。一个成功的项目不仅将展示完全合成植物基因组道路上的关键一步,而且本身将使我们的主要作物更具生产力、更具弹性和更可持续。该项目将联合合成生物学和植物生物学方面的专业知识,催化下一代植物合成生物学,释放植物的新功能以满足人类未来的需求。
植物激素生长素调节植物生长和发育的许多重要方面(Lavy and Estelle,2016年)。越来越多的证据表明生长素调节植物宿主与其相关微生物之间的相互作用,包括有益的共生体,内生菌和引起疾病的致病生物。因此,生长素也被微生物生成或分解了影响宿主信号,生理和发育不足为奇。此外,最近的研究表明,生长素(尤其是吲哚-3-乙酸,IAA)可以充当信号分子,直接影响微生物发育和/或基因表达(Kunkel and Johnson,2021)。在本研究主题中,我们邀请研究人员提交文章,调查生长素影响宿主和/或微生物生物学的各种方式。自2021年底发布电话以来,我们仅收到了与此主题相关的少数手稿。在事后看来,考虑到这一调查领域的新事物,这并不意外。本研究主题中的四篇文章报告报告了通过植物相关的微生物和生长素在调节植物微生物相互作用中的作用来推进IAA的合成和修饰。
从人类的创造中,很有可能会影响疾病,并且随着时间的流逝,他们开始使用各种成分以及植物,动物,昆虫或自然资源来治愈不同的疾病。可以预期,数千年前的植物意识到植物的重要性。植物用于自然方式改善健康。植物不仅用于治疗疾病,而且还可以以不同的方式改善生活,例如改善收入和愉快的生活方式。今天疾病正在传播。糖尿病通常是目前的综合症,它以令人恐惧的速度上升,并且已成为世界上最严重的公共卫生疾病之一。1是一种内分泌结构的疾病,由于胰岛素排放,成就或共同的全部或相对不足,是碳水化合物代谢疾病。糖尿病正在影响世界各地数百万的人,影响糖尿病的人数日益增加。控制这一越来越多的人数已成为一个挑战。由于发达国家数百万人死亡,这对健康而言越来越造成问题,并且在许多崛起和最近工业化的国家中构成威胁。在不同的国家,其导致死亡的比率不同。糖尿病将是2030年的第七名死亡来源。
•加拿大政府在2018年宣布,这将帮助农业部门创新,成长和竞争,从而减少对加拿大植物育种创新法规的不确定性。•在2019年,加拿大政府在其监管路线图上致力于制定澄清指导,估计时间为1 - 2年。•在2020年,联邦部门(包括农业和加拿大农业食品,CFIA和加拿大卫生部)与广泛的利益相关者合作,开发了严格的基于科学的建议。•在2021年,政府进行了完全公开和包容的咨询,并考虑了所有回应。•加拿大卫生部在2022年5月发布了有关此主题的最新指南,行业利益相关者被告知,CFIA的指导已经准备好,并计划于2022年10月发布。
这项调查的主要目的是确定尼泊尔莫朗区不同海拔不同森林林分之间的生物量和碳分布模式。值得注意的是,估计尼泊尔东森林相对较少的碳储备和生物量。估计五个不同森林地点的生物量和碳库存的数据,即。Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma位于平均海平面100-1300m之间,是通过随机选择的库存图获得的。总共建立了50个样品图,在不同的高度区域的五个森林林座中建立。在每个森林地点,布置了10个20m×20m尺寸的样品图,以测量树木。在灌木和草药的情况下,分别建立了5m×5m和1m×1m的嵌套图。通过应用异形方程来促进树木和灌木的生物量的计算,而草药的生物量通过收获方法确定。使用灰分含量法估计植物材料中的碳浓度。对Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma Forest地点的架子生物量的全面分析是:815.86 mg HA -1,414.19 mg HA -1,606.81 mg Ha -1,519.20 mg ha -1,519.20 mg ha -1,以及在29.96 mg a -1中的住所,分别是分别的。森林),在Bhaunne地点(低海拔森林)。同样,与Sagma遗址相比,在Bhaunne,Raja-Rani,Murchungi和Adheri站点的草药生物量中观察到了值得注意的变化。根据林分生物量的变化,森林站点的碳库存也显示出相同的趋势,但值在140.19 mg C HA -1至333.63 mg C HA -1之间,sagma位置的最小值范围为Bhaunne站点的最小值。弗里德曼测试的应用揭示了Murchungi和Sagma位点之间的树木生物量以及Adheri和Sagma位点之间的灌木生物量的统计学显着变化。本研究在碳管理上有助于理解森林生态系统。
近年来,全球粮食和能源危机引起了广泛关注。植物合成生物学正成为解决这些问题的一个有吸引力的解决方案,它将植物生物学与工程原理相结合,设计和生产价格低廉且易于扩大规模的新设备或产品。植物合成生物学以植物为底盘,设计和构建具有特定功能的新型生物系统,或通过基因编辑和代谢工程等技术生产有价值的化合物。虽然植物合成生物学在过去几年中取得了重大进展,但对其潜在的生物合成和调控机制的全面理解仍有待探索。本研究主题包含一系列原创研究论文和评论,共同呈现绿色生物制造中植物底盘和植物基因的最新研究趋势和方法,旨在促进植物底盘材料在生物制造中的更广泛应用和植物合成生物学的发展。在这里,我们重点介绍了几项旨在优化代谢途径和植物底盘整合的研究,以经济高效的方式生产有价值的化合物。涉及各种策略,包括多组学分析、底盘开发和基因功能研究。烟草是一种植物底盘,已广泛用于植物合成生物学的体外培养。因此,研究其体外培养中的代谢网络具有重要意义。这有助于促进体外技术在植物繁殖中的应用。为了全面了解烟草体外培养中的代谢网络,Yu等人。建立了一个基因组规模的代谢网络(GSMN),这是一种旨在促进整体代谢谱表征的工具。与土壤种植的烟草相比,体外烟草生长速度较慢、生物量减少、光合作用受到抑制、代谢物和代谢途径发生改变。辣木及其相关物种在健康、食品、化妆品和制药行业具有潜在应用。Klimek-Szczykutowicz 等人提出综述,
