背景和目标:增强碳储备和增强碳吸收潜力的努力对于缓解气候变化至关重要。Peatland生态系统以其高的有机含量而闻名,特别容易受到环境管理的影响。这项研究旨在检查1998年至2022年之间的土地使用和土地覆盖的变化,涵盖了24年的持续时间。此外,它试图评估指定的Kepau Jaya特定目的森林区域内的碳库存的相关变化。所调查的地区涵盖了一个泥炭地生态系统,该生态系统在土地覆盖和土地使用方面发生了很大变化。这项研究调查了由这些改变引起的碳库存波动,并就农业验证系统的潜力促进了更广泛的土地用途的潜力提供了宝贵的观点。此外,它强调了它们在生态系统修复计划中的作用以及对森林泥炭地地区的更好管理。方法:通过使用Google Earth Engine Platform中存储的ShapeFile数据,在Landsat 5和8卫星图像上进行了空间分析。使用分类和回归树进行数据分析,这是用于指导分类的机器学习中的决策树算法。此外,利用有目的的抽样来收集社会经济数据,然后实施福利成本分析。从1998年到2022年,碳库存的年度下降持续下降,导致每年减少1,933.11吨碳。土地使用和覆盖的变化与这种下降密切相关。调查结果:结果表明,在24年期间,Kepau Jaya特定目的区域内土地覆盖率发生了重大变化,森林地区和开放区域每年分别减少23.15公顷,每年分别16.94公顷,而油棕种植园每年扩大40.10公顷。为了增加该地区的植物物种多样性并支持从单一培养物中逐渐过渡,通过将咖啡馆和沙兰格兰在农业式示范中的2公顷油棕榈种植块中的油棕榈行中进行了互动,从而实现了参与性的农林业计划。根据在乳房高度进行的测量结果,测量了这些物种的地上生物量,预计估计了Kepau Jaya Jaya特定目的区域的碳库存,到2030年,碳量达到19,455吨碳,咖啡自由女神(Coffea Liberica)贡献了4,148吨碳和Shorea balangeran balangeranananaan parnangeran parnangeran parnangeran贡献了15.30吨碳酸盐。结论:研究区域的森林覆盖率大大减少,而油棕区域的程度显着扩大。这些发现强调了采取积极措施来通过社区授权和建立示威图来促进农林业发展的特定森林地区的治理。这项研究的结果提供了旨在促进可持续森林管理的长期森林康复策略的见解,从长远来看,可持续的森林管理会产生环境和社会经济益处。
供体选择是FMT中非常关键的一步。尽管来自FDA的基于证据的指南含糊不清,但通常通过进行初步访谈来评估捐助者的危险因素,临床检查,粪便检查,以检测艰难梭菌,沙门氏菌,志贺氏菌,志甲基,shigella,Campylobacter,Escherichia coli,Giari,Giardia和Helminths和Helminths。还进行了血液学筛查,以检测巨细胞病毒,Ebstein Barr病毒和乙型肝炎A,B和C。完全的血液计数,C反应蛋白,肝功能测试和肾功能测试。一般排除标准包括传染病风险因素,慢性疾病,近期抗生素使用,新出现的胃肠道症状,最近摄入有害物质以及无法经常捐款,孕妇,哺乳母亲和吸烟者[14,15,18]。自体FMT(已加工和重新引入自态微生物)也有效地恢复肠道微生物群[19]。
背景。人类诱导的多能干细胞(HIPSC)衍生的胰岛类器官的移植是一种有前途的1型糖尿病(T1D)的细胞替代疗法。重要的是要通过识别具有高血管化和足够容纳的新移植部位来提高胰岛类器官移植的疗效,以支持具有高氧递送能力的移植物存活。方法。产生了人类诱导的多能干细胞系(HIPSCS-L1),以构成表达荧光素酶。表达荧光素酶的hipscs被分化为胰岛类器官。将胰岛类器官移植到非肥胖糖尿病/严重的合并免疫缺陷疾病(NOD/SCID)小鼠的肩cap骨脂肪组织(BAT)中,作为蝙蝠组,在NOD/SCID小鼠的左肾胶囊(KC)下,作为对照组,作为对照组,分别为tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tiver。在第1、7、14、28、35、42、49、56和63后移植后,进行了类器官移植物的生物发光成像(BLI)。结果。BLI信号,包括BAT和对照组。BAT和KC组的BLI信号逐渐降低。然而,左KC下的移植BLI信号强度大大降低的速度要快得多。此外,我们的数据表明,将移植到链蛋白酶诱导的糖尿病小鼠中的胰岛器官恢复了正常血糖。正电子发射断层扫描/MRI验证了胰岛类器官是否在这些糖尿病小鼠的预期位置移植。结论。免疫荧光染色显示出胰岛素和胰高血糖素染色所证实的功能类器官移植物的存在。我们的结果表明,BAT是T1D治疗的胰岛类器官移植的潜在理想部位。
计算模型已成功预测癌细胞系数据中的药物敏感性,为指导精准医疗创造了机会。然而,将这些模型转化为肿瘤仍然具有挑战性。我们提出了一种新的迁移学习工作流程,该工作流程基于源自基因组特征的分子通路,将药物敏感性预测模型从大规模癌细胞系转移到肿瘤和患者来源的异种移植。我们进一步计算特征重要性以确定对药物反应预测最重要的途径。我们在肿瘤(AUROC = 0.77)和三阴性乳腺癌患者来源的异种移植(RMSE = 0.11)上获得了良好的表现。利用特征重要性,我们强调了 ER-Golgi 运输通路与乳腺癌患者依维莫司敏感性之间的关联以及 II 类组蛋白去乙酰化酶和白细胞介素-12 在三阴性乳腺癌药物反应中的作用。通路信息支持将药物反应预测模型从细胞系转移到肿瘤,并可以提供预测背后的生物学解释,作为临床环境使用的垫脚石。
1。生物多样性2。气候变化适应和弹性3。气候变化治理,立法和诉讼4。气候,健康与环境5。环境行为6。环境经济理论7。环境政策评估8。国际气候政治9。科学和气候变化的影响10。可持续公共和私人财政11。可持续自然资源12.过渡到零排放增长13。英国国家和地方气候政策有关格兰瑟姆研究所的更多信息可在以下网址提供:www.lse.ac.uk/granthaminstitute建议引用:Pagel J和Sileci L(2024)不仅仅是碳:社会经济的大型植物植物的社会经济共同养员。Grantham气候变化和环境研究所工作论文410。伦敦:伦敦经济与政治学院
Cristina Astrid Tentori,MD 1.2;卡特琳娜·格雷戈里奥(Caterina Gregorio),博士学位3,4.5;玛丽·罗宾(Marie Robin),医学博士6; Nico Gagelmann,医学博士7; Carmelo Gurnari,医学博士8; Somedeb Ball,MD 9; Juan Carlos Caballero Berrocal,MD 10;卢卡·拉尼诺(Luca Lanino),医学博士1.2; Saverio d'朋友,孟1; MARTA SPAAFIF,博士学位11; Giulia Maggioni,MD 1.2;埃里卡·特拉瓦利诺(Erica Travaglino),理性师12; Elisabetta Sauta,博士学位1; Manja Meggendorfer,博士13; Lin-Pierre Zhao,医学博士6; Alessia Campagna,MD 1.2; Genomed4All,Synthema,Gesmd,Fisim和Eurobloodnet; Victor Savevski,Meng 1; Armando Santoro,MD 1.2; Najla Allai,MD 14;大卫·萨尔曼(David Sallman),医学博士14; Francesc Sole,博士15; Guillermo Garcia-Manero,MD 16; Ulrich Germing,MD 17;尼古拉斯·科格(Nicolaus Koger),医学博士7; Shahram Kordasti,博士18.19;瓦莱里亚·桑蒂尼(Valeria Santini),医学博士20;吉列尔莫·桑兹(Guillermo Sanz),医学博士21;沃尔夫冈·克恩(Wolfgang Kern),医学博士13; Uwe Platzbecker,MD 22; Maria Diez-Campolo,医学博士10; Jaroslaw P. Maciejewski,博士23;莱昂内尔·阿德雷斯(Lionel Adres),医学博士6; Pierre Fenaux,医学博士6; Torsten Haferlach,医学博士13; Amer M. Zeidan,医学博士24;加斯通·卡斯特拉尼(Gastone Castellani),博士25.26; Komrokji Branches,医学博士14; Francesca Ieva,博士学位3,27;和Matteo Giovanni Della Porta,MD 1.2
研究人群佐治亚州新兴感染计划(EIP)(由疾病控制与预防中心资助)在卫生区8县亚特兰大地区(2019年人口420万)中,在8县亚特兰大地区进行基于人群的CDI监视。佐治亚州EIP监视活动得到了埃默里大学机构审查委员会(IRB)的批准,并放弃了同意和HIPAA授权。数据收集得到了Emory University IRB,Atlanta VA研发办公室和Grady Memorial Hospital研究监督委员会的批准,并由佐治亚州公共卫生部IRB审查。这项研究评估了2016年1月1日至2019年12月31日之间的卫生区3的成年居民。此结束日期是由于2019年冠状病毒病(COVID-19)大流行期间对FMT的使用而选择的。
红树林的存储碳(C)的能力长期以来已被认识到,但是对于种植的mangoves是否可以像自然建立的(即完整)站立和在哪个时间范围内保持c是否可以有效地存储C的效率。通过贝叶斯物流模型从40年的数据中汇编而成,并在全球684个种植红树林摊位中建造,我们发现生物量C股票在种植后约20年达到71%至73%,达到了73%。进一步,优先考虑包括根瘤菌属的混合物种种植。将最大化生物量内的C积累。尽管种植后的头5年增加了25%,但此后的土壤C种群未观察到明显的变化,其恒定价值的恒定价值与完整的土壤C库存的恒定价值为75%,这表明由于土地使用变化而有效地播种可防止进一步的C损失。这些结果对红树林的恢复计划具有很大的影响,并作为未来C堆积评估的基准。
研究气道上皮中严重急性呼吸综合征2(SARS-COV-2)的感染机制,并制定针对感染的有效防御策略很重要。为实现这一目标,建立适当的感染模型至关重要。因此,各种体外模型,例如细胞系和培养物,以及涉及表现出SARS-COV-2感染和遗传性人类动物的动物的体内模型,已被用作动物模型。但是,尚未建立动物模型,该模型允许在气道上皮生理环境下对人类细胞进行感染实验。因此,我们旨在建立一种新型的动物模型,该模型可以使用人类细胞进行感染实验。使用了人类诱导的多能干细胞衍生的气道上皮细胞移植的裸鼠(HIPSC-AEC大鼠),并通过喷洒含有SARS-COV-2峰值蛋白质的慢病毒假病毒来进行感染研究。感染后,免疫组织化学分析揭示了上皮和粘膜下层中GFP阳性感染的移植细胞的存在。在这项研究中,建立了包括人类细胞在内的SARS-COV-2感染动物模型通过呼吸模仿感染,我们证明HIPSC-AEC大鼠可以用作基础研究的动物模型,并开发了人类特异性呼吸道治疗方法的治疗方法。
方法:招募了九只具有耐药性癫痫(DR)和行为合并症的狗。粪便供体的癫痫病具有不明显的行为,对苯巴比妥表现出完全反应,从而导致长期无癫痫发作。FMT进行了三次,相隔两周,狗在FMT后三个月和六个月进行了随访。进行了全面的行为分析,包括对注意力缺陷多动障碍(ADHD)(ADHD)以及恐惧和焦虑症行为以及认知功能障碍的行为测试,然后进行了客观的计算分析。血液样本用于分析抗性药物(ASD)浓度,血液学和生物化学。测量尿液神经递质浓度。 使用浅DNA shot弹枪测序,实时聚合酶链反应(QPCR)基于基于基于的营养不良的脂肪障碍指数(DI)评估和短链脂肪酸(SCFA)定量,对粪便样品进行分析。尿液神经递质浓度。粪便样品进行分析。
