2.6.1 几何校正、纠正与地理参考 2.6.2 图像增强 2.6.3 训练集选择 2.6.4 签名生成与分类 2.6.5 在 GIS 中创建/叠加矢量数据库 2.6.6 分类图像的验证 2.6.7 最终土地利用/植被覆盖图的准备 3.0 土地利用/植被覆盖制图 18-31 3.1 简介 3.2 土地利用/覆盖分类 3.3 数据分析 3.3.1 植被覆盖 3.3.2 采矿区 3.3.3 农业用地 3.3.4 荒地 3.3.5 定居点 3.3.6 水体 4.0 结论与建议 32-33
2.6.1 几何校正、纠正与地理参考 2.6.2 图像增强 2.6.3 训练集选择 2.6.4 签名生成与分类 2.6.5 在 GIS 中创建/叠加矢量数据库 2.6.6 分类图像的验证 2.6.7 最终土地利用/植被覆盖图的准备 3.0 土地利用/植被覆盖制图 18-31 3.1 简介 3.2 土地利用/覆盖分类 3.3 数据分析 3.3.1 植被覆盖 3.3.2 采矿区 3.3.3 农业用地 3.3.4 荒地 3.3.5 定居点 3.3.6 水体 4.0 结论与建议 32-33
(8)报告目的:绘制 1:50000 比例的 Rajmahal 煤田土地利用/植被覆盖图,以评估煤矿开采对土地和环境的影响。
nsw.gov.au › assets › pdf_file PDF 1998年12月15日 — 1998年12月15日 摘自 West 等人(1985 年)的数字地图数据……和工业发展,重新定位库克斯河河口以延伸。
在发射时,将为全球陆地生成两种植被指数 (VI) 算法。一种是标准归一化差异植被指数 (NDVI),它被称为现有 NOAA-AVHRR 衍生 NDVI 的“连续性指数”。在发射时,将有来自 NOAA-AVHRR 系列的近 20 年的 NDVI 全球数据集(1981 - 1999 年),可以通过 MODIS 数据进行扩展,以提供用于操作监测研究的长期数据记录。另一种是“增强型”植被指数 (EVI),它对高生物量区域的灵敏度更高,并且通过分离冠层背景信号和减少大气影响来改善植被监测。这两个 VI 在全球植被研究中相互补充,并改进了冠层生物物理参数的提取。还使用了一种新的合成方案,可以减少角度、太阳目标传感器变化。网格植被指数图使用 MODIS 表面反射率(针对分子散射、臭氧吸收和气溶胶进行了校正,并使用 BRDF 模型调整至最低点)作为 VI 方程的输入。网格植被指数将包括带有统计数据的质量保证 (QA) 标记,用于指示 VI 产品和输入数据的质量。产品可以总结为:
摘要 研究了低植被对机载激光扫描的影响。高植被可通过过滤去除,但低植被会导致数字地形模型出现系统性误差。许多研究人员报告称测量值过高。对激光测距影响的研究提高了对所用技术的理解,并解释了观察到的误差。研究了使用植被类型信息校正数据的可能性,并使用来自地面测量的地面真实数据作为参考。提出了一种使用纹理测量的替代方法,该方法不需要有关土地覆盖类型的信息。纹理之前已为数字图像定义,这里介绍了其在点云中的等效纹理。
植被状况、覆盖、变化和过程的评估是全球变化研究项目的主要组成部分,也是具有重大社会意义的课题。光谱植被指数是最广泛使用的卫星数据产品之一,它为气候、水文和生物地球化学研究、物候学、土地覆盖和土地覆盖变化检测、自然资源管理和可持续发展提供了关键测量数据。植被指数 (VI) 是一种稳健且无缝的数据产品,无论生物群落类型、土地覆盖状况和土壤类型如何,它都以类似的方式在时间和空间上对所有像素进行计算,因此代表了真实的表面测量值。VI 的简单性使其能够跨传感器系统融合,这有助于确保长期陆地表面建模和气候变化研究的关键数据集的连续性。目前,已有超过二十年的 NOAA 高级甚高分辨率辐射计 (AVHRR) 得出的一致的全球归一化差异植被指数 (NDVI) 陆地记录,这对全球生物群落、生态系统和农业研究做出了重大贡献。在本章中,我们介绍了中分辨率成像光谱仪 (MODIS) VI 产品的当前状态、其算法状态和传统、验证和 QA。我们重点介绍了陆地遥感科学的一些重要进展,并讨论了使用 MODI 所带来的各种应用和社会效益
在过去的十年中,机载激光扫描已发展为一种用于测深映射的操作技术。深度发声的操作系统之一是Hawk Eye II系统。在本报告中,我们通过对不同底部类型之间激光数据中的可分离性进行实验评估来检查底部植被和底物分类的可能性。我们从Hawk Eye II系统中研究了许多数据变量,这些变量有可能描述海底的反射率和粗糙度。这些变量是从脉冲响应中提取的,也表示从水体积和海底的发射和反射激光脉冲的波形。我们还描述了校正波形变量的方法,水浊度和激光系统参数。
摘要 人们花费了大量精力来研究基于像素的分类精度和相关因素的空间变化。在过去的几年中,基于对象的分类引起了越来越多的关注。本文研究了影响基于对象的植被制图中分类不确定性空间变化的因素。我们研究了基于对象的分类中的六类因素:一般成员资格、地形、样本对象密度、空间组成、样本对象可靠性和对象特征。首先,使用引导方法得出分类不确定性(基于每个案例的分类精度)。然后,用分类或连续变量量化六类因素。在此步骤中,还讨论了计算样本对象空间组成指标的适当半径。最后,使用混合线性模型将分类不确定性建模为这些因素的函数。确定了重要因素,并从限制性最大似然拟合中估计了它们的参数。建模结果表明,海拔、样本对象大小、样本对象可靠性、样本对象密度和样本空间组成显著影响基于对象的分类不确定性。其中许多因素与基于对象的方法密切相关。本研究的结果有助于理解分类错误,并建议进一步改进分类。
与森林砍伐、碳循环、酸沉降和污染有关的重要问题。此外,全球植物信息在经济方面也很有用,例如调查粮食和纤维资源状况。许多研究人员已经研究了光学数据的信息内容,重点研究了 Landsat 传感器 [即多光谱扫描仪 (MSS) 和专题制图仪 (TM)]。遥感和植物学文献中充满了关于 MSS 和 TM 图像数据的潜在或实际用途的论文(请参阅 Colwell (1983) 的摘要)。其他研究人员已经探索了主动微波数据的信息内容(请参阅 Ulaby 等人 (1983) 的摘要)。很少有研究人员将光学和主动微波数据结合起来用于植被特征描述(Wu,1981)。在本文中,我们介绍了对加利福尼亚州某地区航天器拍摄的光学和有源微波图像数据进行综合研究的结果,该地区的草本植物和木本植被种类繁多。 1984 年 10 月,美国国家航空航天局 (NASA) 进行了第二次航天飞机成像雷达 (SIR) 任务。第一次任务 (SIR-A) 于 1981 年 11 月完成。它是一台合成孔径雷达 (SAR),工作在 L 波段,波长为 23.5 厘米,微波发射和接收均为水平极化(即 HH 极化组合)。SIR-A 以入射角观察地球表面