取决于影响参数碰撞的大小为两种类型。这些是具有较小的影响参数的“中心”碰撞,具有较大影响参数的“外围”或“非中心碰撞”。当两个核碰撞并随后膨胀时,考虑了三种类型的横向流:径向横向流,定向流和椭圆流。径向横向流动以进行方位角的各向同性中心碰撞和非中央碰撞,各向异性流动,即允许定向和椭圆流。一个称为反应平面的平面,可以确定以描述那些不是各向同性方位角的事件,并且相对于该平面,计算了针对定向和椭圆流的颗粒各向异性。可以根据傅立叶膨胀来计算颗粒相对于该平面的方位角分布,而第一个谐波的幅度可以得出在Bevalac 10中发现的定向流。
椭圆曲线密码 (ECC) 的主要运算是将椭圆曲线 (EC) 点 P 与长二进制标量 k 相乘,记为 kP 。攻击者的目标是获取标量 k(进一步记为密钥 k )。这通常可以通过分析测量的功率或 kP 执行的电磁痕迹或其他旁道效应来实现。蒙哥马利阶梯算法是实现 kP 计算最常用的算法。文献中报道,该算法可以抵抗简单的旁道分析 (SCA) 攻击,因为它是一种平衡算法,即,标量 k 的每个位值的处理都按照相同的运算序列完成,即一个 EC 点加法和一个 EC 点加倍。但是,蒙哥马利阶梯算法中寄存器的使用取决于密钥,因此容易受到垂直数据位和水平地址位攻击。已知的对策之一是随机化算法主循环每次迭代的 EC 点操作(加法和加倍)的顺序。只有当计算 EC 点加法的域操作顺序与计算 EC 点加倍的域操作顺序相同时,随机化才有意义,例如,如果应用了统一的 EC 点加法公式。[4] 报告了一种完全平衡的 ASIC 协处理器,该协处理器在 Weierstrass 椭圆曲线上实现了完整的加法公式。该设计是开源的,VHDL 代码可在 GitHub 存储库 [3] 中找到。我们为 IHP 250 nm 单元库合成了这个开源设计,并使用 EC secp256k1 的基点作为与原始测试台相对应的输入点 P 来模拟 kP 执行的功率轨迹。我们尝试了不同长度的标量 k。我们模拟了约 20 位以及约 200 位密钥的功率轨迹,并执行了
摘要:高度椭圆形轨道(HEO)中的航天器的形成(SFF)引起了很多关注,因为在太空探索中的许多应用中,同时精确的指导导航和控制(GNC)技术(尤其是精确的范围)为此类SFF任务提供了成功的基础。在本文中,我们介绍了一种新颖的K带微波炉(MWR)设备,该设备旨在在未来的HEO SFF任务中对亚毫米级的精确范围技术的轨道验证。范围技术是一种同步的双单向范围(DOWR)微波相蓄积系统,在实验室环境中实现了数十微米的范围精度。提供了MWR设备的详细设计和开发过程,并分析了范围的错误源,并考虑了实际的扰动,为HEO形成场景提供了相对的轨道动态模型。此外,引入了一种自适应卡尔曼过滤算法,用于SFF相对导航设计,并结合了过程噪声不确定性。在使用MWR时,SFF相对导航的性能在高精度六个自由度(6-DOF)移动平台的硬件(HIL)模拟系统中测试。使用自适应过滤器的MWR的最终范围估计误差小于35 µm m,范围率为8.5 µm/s,这证明了未来HEO形成任务应用程序的有希望的准确性。
使用椭圆形曲线(EC)上有限场上的加密协议是全球范围内已知的数字签名生成和验证[1]以及相互认证的方法。ec加密操作是时间且能量昂贵,但要比RSA快得多[2]。此外,椭圆曲线密码学(ECC)使用的加密密钥比RSA明显短,同时提供相同的安全性。这减少了发送和接收消息所需的时间和能量。这些功能使ECC对不仅需要高度安全性,而且需要低功率的实时通信和数据处理的设备非常有吸引力。重要性的应用领域是物联网(IoT),自动驾驶,电子卫生,行业4.0和许多其他应用程序。
基于尾场的加速器能够将梯度加速比现有加速器高两个数量级,为实现紧凑型高能物理仪器和光源提供了一条途径。然而,对于高梯度加速器,由相应较高的横向尾场驱动的光束不稳定性会限制光束质量。此前的理论表明,可以通过将平面对称介电结构中的光束横向尺寸椭圆化来减小横向尾场。我们在此报告实验测量结果,这些测量结果表明平面对称结构中椭圆光束的横向尾场减小,这与理论模型一致。这些结果可能有助于设计出基于千兆伏/米梯度尾场的加速器,以产生并稳定加速高质量光束。
• The point (9,5) satisfies this equation since: y 2 mod p = x 3 + x mod p 25 mod 23 = 729 + 9 mod 23 25 mod 23 = 738 mod 23 2 = 2 The 23 points which satisfy this equation are: (0,0) (1,5) (1,18) (9,5) (9,18) (11,10) (11,13) (13,5) (13,18) (15,3) (15,20)(16,8)(16,15)(17,10)(17,13)(18,10)(18,13)(19,1)(19,22)(20,4)(20,19)(20,19)(21,6)(21,17)(21,17)
保护需要许多不同策略的结合。已经提出了许多指标和标准来评估森林的可持续性管理,但其科学有效性仍然不确定。因为森林干扰的影响(例如记录)通常是特定的,对特定物种,地点,景观,区域和森林类型,因此管理“快捷方式”,例如指示物种,焦点物种和植被覆盖的阈值水平可能具有有限的一般性价值。Lindenmayer等人,(2006年)提出的关于生物多样性保护的五个指导原则,这些原则广泛适用于任何森林地区:(1)维持连接性; (2)维持景观异质性; (3)维持架子结构复杂性; (4)维持水生生态系统完整性; (5)使用自然障碍制度指导人为障碍制度。
以下方法适用于确定光学功能。透明区域中的数据(1400-3000 cm -1)用于确定厚度的近似值。使用此厚度,对整个数据集(包括多个AOIS,未显示)进行了逐波长顺序分析,以确定每个波长在每个波长的光函数的数字值列表。然后使用这些近似光学函数来生成一个振荡器方程以表示光功能。最后,分散方程的振荡器参数以及膜厚度变化以获得最终的光学函数和最终厚度。图12显示了以这种方式确定该材料的光学功能。在最终分析中,使用高级方法(本文的范围)来完善光学常数值。
