(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年1月3日发布。 https://doi.org/10.1101/2023.01.02.522503 doi:Biorxiv Preprint
摘要在过去十年中,通过应用新技术,我们对神经疾病的理解得到了极大的增强。全基因组关联研究已突出了神经胶质细胞作为疾病的重要参与者。单细胞分析技术正在以未注明的分子分辨率提供神经元和神经胶质疾病状态的描述。然而,我们对驱动疾病相关的细胞态的机制以及这些状态如何促进疾病的机制仍然存在巨大差距。我们理解中的这些差距可以由基于CRISPR的功能基因组学桥接,这是一种有力的系统询问基因功能的方法。在这篇综述中,我们将简要回顾有关神经疾病相关的细胞态的当前文献,并引入基于CRISPR的功能基因组学。我们讨论了基于CRISPR的筛查的进步,尤其是在相关的脑细胞类型或细胞环境中实施时,已经为发现与神经系统疾病相关的细胞状态的机制铺平了道路。最后,我们将描述基于CRISPR的功能基因组学的当前挑战和未来方向,以进一步了解神经系统疾病和潜在的治疗策略。
Battaglini,M.,Gentile,G.,Luchetti,L.,Giorgio,A.,Vrenken,H. M.,Rocca,M。A.,Preziosa,P.,Gallo,A.,…De Stefano,N。(2019年)。寿命规范性数据有关大脑体积变化的速率。衰老的神经生物学,81,30 - 37。https://doi.org/10.1016/j.neurobiolaging.2019。05.010 Cam-Can Consortium,Samu,D.,Campbell,K。L.,Tsvetanov,K。A.,Shafto,M。A.,&Tyler,L。K.(2017)。随着年龄的增长而保留的认知功能取决于网络响应中的域依赖性变化。自然通讯,8(1),14743。https://doi.org/10.1038/ NComms14743 Chan,M。Y.,Park,D。C.,Savalia,N。K.,Petersen,S。E.和Wig,G。S.(2014)。减少了整个健康成人寿命中大脑系统的分离。美国国家科学院的会议记录,111(46),E4997 - E5006。Cox,R。W.(1996)。afni:用于分析和可视化功能磁共振神经图像的软件。计算机和生物医学研究,29(3),162 - 173。Dale,A.,Fischl,B。,&Sereno,M。I.(1999)。基于表面的皮质分析:I。分割和表面重建。Neuroimage,9(2),179 - 194。https://doi.org/10.1006/nimg.1998.0395 Destrieux,C.,Fischl,B.,Dale,A。,&Halgren,A。,&Halgren,E。(2010)。使用标准解剖学名称的人皮层回旋和硫酸自动曲柄。Neuroimage,53(1),1 - 15。(2016)。Soc。Dhollander,T。和Connelly,A。一种新型的迭代方法,可以从仅单壳( + b = 0)差异MRI数据中获得多组织CSD的益处。24 int。宏伟。共振。Med,24,3010。Esteban,O.,Markiewicz,C。J.,Blair,R。W.,Moodie,C.A.fmriprep:用于功能性MRI的强大预处理管道。自然方法,16(1),111 - 116。Fan,L.,Li,H.,Zhuo,J.,Zhang,Y.,Wang,J.,Chen,L.,Yang,Z.,Chu,C.,Xie,S。,&Laird,A。R.(2016)。 人类Brainetome Atlas:基于连接架构的新大脑图集。 大脑皮层,26(8),3508 - 3526。 Fischl,B。和Dale,A。M.(2000)。 通过磁共振图像测量人脑皮质的厚度。 美国国家科学院的会议录,97(20),11050 - 11055。 Fischl,B.,Liu,A。和Dale,A。M.(2001)。 自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。 IEEE医学成像,20(1),70 - 80。 Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A. 整个大脑分割:人脑中神经解剖结构的自动标记。 Neuron,33,341 - 355。 磁共振图像的独立序列分段。 (1999)。Fan,L.,Li,H.,Zhuo,J.,Zhang,Y.,Wang,J.,Chen,L.,Yang,Z.,Chu,C.,Xie,S。,&Laird,A。R.(2016)。人类Brainetome Atlas:基于连接架构的新大脑图集。大脑皮层,26(8),3508 - 3526。Fischl,B。和Dale,A。M.(2000)。通过磁共振图像测量人脑皮质的厚度。美国国家科学院的会议录,97(20),11050 - 11055。Fischl,B.,Liu,A。和Dale,A。M.(2001)。 自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。 IEEE医学成像,20(1),70 - 80。 Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A. 整个大脑分割:人脑中神经解剖结构的自动标记。 Neuron,33,341 - 355。 磁共振图像的独立序列分段。 (1999)。Fischl,B.,Liu,A。和Dale,A。M.(2001)。自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。IEEE医学成像,20(1),70 - 80。Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A.整个大脑分割:人脑中神经解剖结构的自动标记。Neuron,33,341 - 355。磁共振图像的独立序列分段。(1999)。Fischl,B.,Salat,D.H.,van der Kouwe,A.J.W.,Makris,N.,Ségonne,F.,Quinn,B.T。,&Dale,A.M。(2004)。 Neuroimage,23(Suppl 1),S69 - S84。 https://doi.org/10.1016/j.neuroimage.2004.07.016 Fischl,B.,Sereno,M.I。,&Dale,&Dale,A. 基于表面的分析:II:通货膨胀,变平和基于表面的坐标系。 Neuro-图像,9(2),195 - 207。https://doi.org/10.1006/nimg.1998.0396 Gao,M.,Wong,C.H。Y.,Huang,Huang,H.,Shao,Shao,Shao,R. 基于连接的模型可以预测老年人的速度。 Neuroimage,223,117290。https://doi.org/ 10.1016/j.neuroimage.2020.117290 Gao,S.,Greene,A.S.,Constable,R.T。,&Scheinost,D。(2019)。 组合多个连接组可改善表型度量的预测建模。 Neuroimage,201,116038。https://doi.org/10.1016/j。 Neuroimage.2019.116038Fischl,B.,Salat,D.H.,van der Kouwe,A.J.W.,Makris,N.,Ségonne,F.,Quinn,B.T。,&Dale,A.M。(2004)。Neuroimage,23(Suppl 1),S69 - S84。https://doi.org/10.1016/j.neuroimage.2004.07.016 Fischl,B.,Sereno,M.I。,&Dale,&Dale,A.基于表面的分析:II:通货膨胀,变平和基于表面的坐标系。Neuro-图像,9(2),195 - 207。https://doi.org/10.1006/nimg.1998.0396 Gao,M.,Wong,C.H。Y.,Huang,Huang,H.,Shao,Shao,Shao,R.基于连接的模型可以预测老年人的速度。Neuroimage,223,117290。https://doi.org/ 10.1016/j.neuroimage.2020.117290 Gao,S.,Greene,A.S.,Constable,R.T。,&Scheinost,D。(2019)。组合多个连接组可改善表型度量的预测建模。Neuroimage,201,116038。https://doi.org/10.1016/j。Neuroimage.2019.116038
此外,随机森林分类器通过其易于可见的特征的重要性提供了易于解释。特征重要性是一个简单的度量标准,它指示每个特征对分类器预测的相对贡献。例如,对于选定的分类器,“ shop”一词的特征重要性得分为0.044,是平均特征重要性得分0.006的七倍以上。这意味着“商店”一词在分类中高度相关,与一个平均重要的功能相比。这允许对分类器的预测进行摘要见解。使用Python(Scikit-Learn)中的机器学习软件包来计算功能重要性。表3中突出显示了具有显着特征重要性的特征单词。
在过去的十年中,慢性淋巴细胞性白血病(CLL)和小淋巴细胞淋巴瘤(SLL)的管理范式经历了前所未有的变化,从而导致患者的根本改善结果(1,2)。以前的治疗基石,细胞毒性化学疗法,导致许多患者的缓解,但也是短期和长期治疗相关的病因(3)。对于较差的风险疾病生物学患者,这些减免的寿命短(4,5)。相比之下,现在可以期望患者通过靶向疗法依次治疗,这些疗法既可以耐受,口服且明显更有效(6-10)。尽管现代靶向疗法产生了极大改善的结果,但这些药物现已被纳入常规临床实践,这足以使患者开始对多种类别产生抗药性或不耐受性(11-17)。这些患者代表了CLL/SLL中未满足医疗需求的新且快速增长的领域。确保CLL/SLL患者的持续进展将需要增加对通过多种靶向治疗治疗的新兴患者组的关注。在这里,我们专注于如何在现代治疗环境中最好地定义未满足的需求,并为关键利益相关者/护理人员提供了确保我们患者应得的持续创新的机会。
深度学习的大脑磁共振成像(MRI)重建方法具有加速MRI采集过程的潜力。尽管如此,科学界缺乏适当的基准来评估高分辨率大脑图像的MRI重建质量,并评估这些提出的算法在存在很小但预期的数据分布变化的情况下将如何行为。使用大型高分辨率,三维,T1加权MRI扫描的大量数据集,旨在解决这些问题的基准,旨在解决这些问题。挑战有两个主要目标:(1)比较该数据集上的不同MRI重建模型,以及(2)评估这些模型对使用不同数量的接收器线圈获取的数据的概括性。在本文中,我们描述了挑战实验设计,并总结了一组基线和最先进的脑MRI重建模型的结果。我们提供了有关当前MRI重建最先进的相关比较信息,并强调了获得更广泛采用之前所需的可推广模型的挑战。公开可用的MC-MRI基准数据,评估代码和当前的挑战排行榜。他们提供
摘要:本文致力于人工智能在教育中的应用,并强调可持续发展背景下的机遇和问题。分析了人工智能技术在教育过程中的引入现状。在教育过程中最常用的人工智能技术概括为以下几类:认知服务;虚拟、混合和增强现实;物联网和外围计算;元认知支架。根据对受益者的影响,在教育过程中使用人工智能的优势概括为:学生、教师、学生家长、教育机构负责人、地方政府。事实证明,通过使用人工智能技术和基于从应用这些技术中获得的分析数据创建个人培训计划,学习过程可以非常有效。发现在教育中使用人工智能的主要优势是教育过程的个性化和个性化。指出了教育机构和地方政府负责人从在教育过程中使用人工智能技术以确保可持续发展中获得的好处,包括决策的透明度和问责制、合理和高效地利用资源。揭示了在教育过程中由人工智能处理的学生数据的保密性和非个人化问题;建议区分教育机构对个人和机密数据的访问、存储和使用的责任。概述了进一步科学研究的前景——教育过程的进一步个性化和个体化。关键词:教育信息化、教育中的人工智能、可持续发展、教育个性化、教育个性化、信息和通信能力。引用方式:Yuskovych-Zhukovska, V., Poplavska, T., Diachenko, O., Mishenina, T., Topolnyk, Y., & Gurevych, R. (2022)。人工智能在教育中的应用。可持续发展的问题和机遇。大脑。人工智能和神经科学的广泛研究,13 (1Sup1),339-356。https://doi.org/10.18662/brain/13.1Sup1/322
卷积神经网络(CNN)已广泛应用于运动图像(MI)分类范围,从分类精度方面显着提高了最新的(SOA)性能。尽管彻底探索了创新的模型结构,但对目标函数的关注很少。在MI区域中的大多数可用CNN中,标准的横向损失通常作为目标函数执行,这仅确保深度特征可分离性。与当前目标函数的限制相对应,提出了一种新的损失函数,该损失函数与平滑的跨熵(标签平滑)和中心损失的组合被提议作为MI识别任务中模型的监督信号。特别是,通过预测标签和通过均匀分布的噪声正规化的一式硬硬标签之间的熵来计算平滑的横膜。中心损失将学习每个班级的深度特征中心,并最大程度地减少深度特征及其相应中心之间的距离。拟议的损失试图在两个学习目标中优化该模型,以防止过度确定预测并增加深度特征的判别能力(类间的可分离性和内部不变性),从而确保MI识别模型的有效性。我们对两个众所周知的基准(BCI竞争IV-2A和IV-2B)进行了广泛的实验,以评估我们的方法。结果表明,所提出的方法比两个数据集上的其他SOA模型都能达到更好的性能。提出的学习方案为MI分类任务中的CNN模型提供了更强大的优化,同时降低了过度拟合的风险,并增加了深入学习特征的歧视性。
对组合优化问题(例如旅行推销员问题)的神经网络求解器的端到端培训是棘手的,效率低下,超过了几百个节点。,当最新的机器学习方法经过琐碎的尺寸训练时,与经典求解器紧密相关,但他们无法将学习的政策推广到更大的实用范围。旨在利用转移学习来解决大规模TSP,本文确定了归纳偏见,模型架构和学习算法,这些算法促进对比培训中所见的实例更大的实例。我们的受控实验提供了对这种零弹性概括的首次原则研究,表明除训练数据超出训练数据需要重新思考神经组合优化管道,从网络层和学习范式到评估方案。
架构有可能彻底改变许多人类活动,包括物流、医学和法律 2-4 ;然而,这些系统的负责任和安全地部署取决于它们是否能被人类利益相关者理解。5 针对这一问题提出了两种解决方案:一是设计本质上可解释或透明的系统,这通常会在性能上有所妥协;二是开发定制解决方案来解释一个模糊系统的事后决策。6 在本文中,我们提出了第三种方法,其中可解释性被分析为促进人类理解人工智能 (AI) 系统的问题。因此,我们提出了一种解释人工智能系统的通用方法,通过明确分析提供信息使人类能够理解和预测人工智能的问题。本文的目的是介绍一个统一的框架,从认知科学的角度以可分解组件的角度思考可解释人工智能。我们展示了这个框架如何通过阐明和模块化现有可解释人工智能系统的不同组件为先前的研究提供新的见解。一旦确定,就可以验证这些组件,并讨论这种验证对 XAI 解决方案的普遍性的影响,为 XAI 研究增加了一个新的维度。近年来,有关可解释 AI 的文献激增,7 但仍然缺乏 XAI 技术的连贯理论框架,8 并且现有的分类法是基于解释技术背后的技术基础,而不是其务实目标。这种理论的缺乏阻碍了 XAI 研究,因为它掩盖了哪些经验可以在研究和应用之间安全地转移,以及哪些组件需要在新的环境中重新验证。结果,它既降低了知识积累的速度,也降低了跨部门安全、可解释的 AI 系统的部署速度。此外,大多数 XAI 解决方案往往是由软件工程师为工程师设计的,因此没有考虑如何向非技术用户解释目标系统。 9-12 这是有问题的,因为成功的解释显然取决于用户及其目标,13 如果成功部署了 AI 系统,软件工程师也只是用户的一小部分。可解释的 AI 是一个复杂的问题,既有技术成分,也有心理成分。以结构化和规范的方式阐述 XAI 问题的理论框架可能会揭示以前看似不相关的不同方法和结果之间的关联。这样的框架还将 XAI 问题分解为代表基本组件和依赖关系的抽象,可以单独验证。此外,这种模块化方法将支持部署,因为它允许对解释的哪些子组件可以推广到哪些上下文进行正式测试。我们提出贝叶斯教学作为这样一个框架,它将解释形式化为教师和学习者之间的一种社会行为。在下一节中,我们将解释贝叶斯教学如何将广泛的XAI系统抽象为以下四个组成部分(见表1):(a)目标推理,(b)解释,(c)被解释者模型,(d)解释者模型。具体来说,我们展示了如何应用贝叶斯教学来分解流行的XAI方法类。然后,我们说明如何通过用户研究半独立地验证分解后的部分,并反思贝叶斯教学如何在XAI研究和应用中促进以人为本。最后,我们讨论分解部分的泛化,包括对组件的操作和重组的评论。
