架构有可能彻底改变许多人类活动,包括物流、医学和法律 2-4 ;然而,这些系统的负责任和安全地部署取决于它们是否能被人类利益相关者理解。5 针对这一问题提出了两种解决方案:一是设计本质上可解释或透明的系统,这通常会在性能上有所妥协;二是开发定制解决方案来解释一个模糊系统的事后决策。6 在本文中,我们提出了第三种方法,其中可解释性被分析为促进人类理解人工智能 (AI) 系统的问题。因此,我们提出了一种解释人工智能系统的通用方法,通过明确分析提供信息使人类能够理解和预测人工智能的问题。本文的目的是介绍一个统一的框架,从认知科学的角度以可分解组件的角度思考可解释人工智能。我们展示了这个框架如何通过阐明和模块化现有可解释人工智能系统的不同组件为先前的研究提供新的见解。一旦确定,就可以验证这些组件,并讨论这种验证对 XAI 解决方案的普遍性的影响,为 XAI 研究增加了一个新的维度。近年来,有关可解释 AI 的文献激增,7 但仍然缺乏 XAI 技术的连贯理论框架,8 并且现有的分类法是基于解释技术背后的技术基础,而不是其务实目标。这种理论的缺乏阻碍了 XAI 研究,因为它掩盖了哪些经验可以在研究和应用之间安全地转移,以及哪些组件需要在新的环境中重新验证。结果,它既降低了知识积累的速度,也降低了跨部门安全、可解释的 AI 系统的部署速度。此外,大多数 XAI 解决方案往往是由软件工程师为工程师设计的,因此没有考虑如何向非技术用户解释目标系统。 9-12 这是有问题的,因为成功的解释显然取决于用户及其目标,13 如果成功部署了 AI 系统,软件工程师也只是用户的一小部分。可解释的 AI 是一个复杂的问题,既有技术成分,也有心理成分。以结构化和规范的方式阐述 XAI 问题的理论框架可能会揭示以前看似不相关的不同方法和结果之间的关联。这样的框架还将 XAI 问题分解为代表基本组件和依赖关系的抽象,可以单独验证。此外,这种模块化方法将支持部署,因为它允许对解释的哪些子组件可以推广到哪些上下文进行正式测试。我们提出贝叶斯教学作为这样一个框架,它将解释形式化为教师和学习者之间的一种社会行为。在下一节中,我们将解释贝叶斯教学如何将广泛的XAI系统抽象为以下四个组成部分(见表1):(a)目标推理,(b)解释,(c)被解释者模型,(d)解释者模型。具体来说,我们展示了如何应用贝叶斯教学来分解流行的XAI方法类。然后,我们说明如何通过用户研究半独立地验证分解后的部分,并反思贝叶斯教学如何在XAI研究和应用中促进以人为本。最后,我们讨论分解部分的泛化,包括对组件的操作和重组的评论。
主要关键词