在本研究中,开发了一个通用概率设计框架,用于预测金属硬件的循环疲劳寿命,所采用的方法解决了实验数据和计算模型中的不确定性。该方法涉及:(i)在 Ti6Al4V 材料试样上进行的疲劳试验数据,(ii)基于连续损伤力学 (CDM) 的材料本构模型,用于模拟材料的循环疲劳行为,(iii)基于方差的全局灵敏度分析,(iv)用于模型校准和不确定性量化的贝叶斯框架,以及(v)在不确定性下的计算寿命预测和概率设计决策。使用实验数据进行计算分析的结果证明了在存在不完整和噪声数据的情况下,概率设计方法用于模型校准的可行性。此外,使用概率设计方法可以评估计算模型预测的疲劳寿命的可靠性。[DOI: 10.1115/1.4038372]
我对 2017 年概率安全评估与分析国际专题会议 (PSA 2017) 感到非常兴奋,会议主题定为“下一代概率安全评估与分析创新与发展的桥梁”。事实上,PSA 会议将提供一个绝佳的机会来倾听新旧问题、学习新方法以及交流经验和专业知识。在我们生活的这个充满活力的世界里,这是非常必要的,知识和技术正在飞速发展,因为我们必须认识到与确保我们继续寻找和找到创新解决方案相关的机遇和挑战,这些解决方案有益于我们的行业、其安全性和可持续性。为了增加和改善 PSA 的使用,为核工业提供价值,需要新的想法和发展。创新对于继续确保核能发电所需的安全标准和长期可持续性是必不可少的。您可以通过参加 PSA 2017 会议并与其他参与者分享您的能力和经验来发挥作用。
新冠肺炎疫情在全球突然爆发,导致航空运输量大幅下降。截至 2020 年 4 月,全球航班数量下降近 80%,其中国际航班受影响最为严重 [1]。在各国政府和国际组织(如国际民用航空组织 (ICAO) 和世界卫生组织 (WHO) 等)的共同努力下,航空运输业已逐步复苏,首先是洲内运营 [2]。显然,尽管疫情对航空业的影响将持续数年,预计的航空运输量增长将有所延迟 [3, 4],但随着行业指导的统一和医疗手段的日益有效发展,航空运输将继续逐步恢复。当主流旅行恢复时,航空交通发展、航空交通效率和安全仍将是一个需要考虑的关键问题。在空中交通管理领域,高度复杂的区域之一是终端机动区 (TMA)。作为所有到达航班汇聚的区域,安全问题在飞机运行期间比其他区域更具影响力。众所周知,由于不确定性导致的飞机轨迹变化可能导致潜在冲突,因为协助空中交通管制员决策过程的系统很少考虑此类扰动。因此,空中交通管制员必须根据其经验和直觉干预飞行操作,这进一步增加了他们的工作量并进一步影响了运营效率。空中交通管理部门已经注意到不确定性的潜在影响。在欧洲,单一欧洲天空 ATM 研究 (SESAR) 已明确表示有兴趣在预测准确性方面提高空中交通服务,同时考虑到到达航段的内在不确定性 [5]。为改进轨迹预测,已开展了相关项目,例如 COPTRA 和 TBO-MET,最近还启动了一个名为 START 的新项目,以确保空中交通安全,同时增强发生干扰时的恢复能力 [6]。在此背景下,我们认为未来的系统需要考虑预测误差,因此 TMA 中的到达飞机调度需要同时考虑多种考虑因素,例如不确定性、安全约束和效率。在本文中,我们提出了一种确定稳健到达时间表的新方法,该方法可以潜在地提高对冲飞行运行期间不确定性的能力,同时仍满足安全所需的各种约束。在考虑标称飞机轨迹的预测误差的情况下进行冲突检测和解决。本文组织如下:第 2 部分介绍相关研究摘要。第 3 节描述了模型公式,包括所提出的模型和作为基准的另外两个模型。根据每个模型的特点,分别为所提出的模型和基准模型给出了不同的目标函数。第 4 节介绍了我们解决问题的方法。然后,在第 5 节中,介绍了一个模拟框架,以研究所提出的模型在干扰下的性能。在第 6 节中,说明了计算结果,并比较了基于这三个模型的优化解决方案获得的模拟结果在出现不确定性时的冲突吸收能力。最后,第 7 节总结了本文。
脑机接口 (BCI) 分析个体与设备或外部环境直接交互的意图 (Wolpaw 等,2000)。个体的意图可以通过脑电图 (EEG) 来解码,脑电图由于其高时间分辨率、可靠性、可负担性和便携性而成为一种成熟的非侵入式技术。目前,由于机器学习和深度学习方法的发展,BCI 已经在辅助和临床领域得到应用。快速串行视觉呈现 (RSVP) 是在同一空间位置以每秒多张图像的高呈现速率顺序显示图像的过程。基于 RSVP 的脑机接口 (BCI) 是一种特殊类型的 BCI 系统 (Marathe 等,2016;Wu 等,2018)。它被证明是一种增强人机共生和人类潜能的可实现方法 (Manor 等,2016)。基于RSVP的BCI是基于人类视觉进行目标检测最常用的技术,其中使用的事件相关电位(ERP)是P300和N200(Wei等,2022)。人类视觉系统是一种非常复杂的信息处理机器。人类具有很强的学习、认知能力和敏感性,可以一眼就识别物体(Sajda等,2010)。因此,基于RSVP的BCI可以利用人类视觉的灵活性获得对环境的快速感知。当前的研究主要集中在提出适用于基于RSVP的BCI的更可靠、更有效的特征提取算法。由于其非平稳性和低信噪比(SNR),在RSVP任务中很难区分目标和非目标刺激。Sajda等人。 (2010 年)开发了一种分层判别成分分析(HDCA)算法,该算法采用 Fisher 线性判别(FLD)来计算空间域中的权重
目前,深基坑开挖引起的结构损伤的早期评估方法由于建模理想化(分析简化)和无知(信息不完整)而具有很大的不确定性。本文实施了土-结构相互作用的弹塑性两阶段解决方案,以预测建筑物对相邻的带支撑深基坑的响应。然后使用该土-结构相互作用解决方案研究两个案例研究中的不确定性。进行了全局敏感性分析,结果表明,地面运动剖面的预测是早期建筑物损伤评估中不确定性的主要来源。当目标建筑物被建模为等效梁时,由于无知和与结构分析模型相关的理想化而导致的不确定性也有很大贡献。然而,使用二维弹性框架结构模型代替等效梁可以大大降低评估的不确定性。考虑到不确定性的存在,提出了一种概率分析方法来量化预测由于开挖引起的下沉造成的潜在建筑物损坏时的不确定性。开发了一种称为“开挖-结构相互作用中的不确定性量化”(UQESI)的计算机程序来实现这种概率分析方法。
摘要 离散集上的量子几何意味着有向图,其权重与定义量子度量的每个箭头相关联。然而,这些“格间距”权重不必与箭头的方向无关。我们利用这种更大的自由度,对以转移概率为箭头权重的离散马尔可夫过程给出量子几何解释,即对图拉普拉斯算子∆ θ 取扩散形式 ∂ + f = ( − ∆ θ + q − p ) f ,根据概率构建的势函数 q、p 以及时间方向的有限差分 ∂ + 。在这一新观点的启发下,我们引入一个“离散薛定谔过程”,即 ∂ + ψ = ı ( − ∆+ V ) ψ,其中拉普拉斯算子与双模连接相关联,使得离散演化是幺正的。我们明确地为 2 状态图解决了这个问题,找到了此类连接的 1 参数族和 f = | ψ | 2 的诱导“广义马尔可夫过程”,其中有一个由 ψ 构建的附加源电流。我们还提到了我们最近在场 F 2 = { 0 , 1 } 上以“数字”形式进行的逻辑量子几何研究,包括德摩根对偶及其可能的推广。
这份白皮书的目的是针对尾巴风险的概率规划,是研究低概率/高影响力的未来天气极端条件中的操作风险。了解风险的影响将促使讨论如何为它们做准备。如本白皮书中所述,运营计划的响应可以是增强发电和传输能力的形式,以增强储备金利润率,识别具有共同模式漏洞的资源以及在极端事件时可以抵消赤字或提供弹性的能源。认识到BPS无法完全承受所有潜在事件,因此必须提供足够的可靠性1,以便即使在服务质量下降,系统也可以可靠地操作。此外,进行维修或减轻系统条件时,系统必须具有反弹或恢复的能力。有关弹性2的可靠性问题指导委员会(RISC)报告提供了有关弹性如何适应NERC活动以及其他活动如何进一步支持电网的弹性的指导。RISC报告强调了NERC长期关注弹性方面的关注,并强调面对不断变化的资源组合,重新审视该问题。NERC概率分析工作组(PAWG)试图通过从发表的文献和电力行业中概率工具的用户收集的最佳实践来解决这些问题。规划人员和运营商的主要关注点是开发一个具有足够可靠性水平的系统,如NERC标准中所阐明的。他们的共同目标是保持系统的可靠性,韧性和安全性,并计划在实时操作中可能发生的极端高影响,低概率的事件中避免在极端高点,低概率的事件中进行广泛的中断。白皮书涵盖了关于极端天气事件的概率研究的全部实施,包括以下组成部分:
现代概率的许多主题在数学物理和量子力学中都有对应内容。例如,抛物线 Anderson 模型的研究与 Anderson 局域化有关;相互作用粒子系统和自旋系统与量子自旋系统和量子多体理论有关;高斯自由场以及 Malliavin 微积分与欧几里得量子场论有关。这些笔记的目的是为具有概率背景的数学家介绍量子力学,提供基本的直觉和一本方便查阅数学物理文献的词典。重点是与概率的联系,特别是马尔可夫过程,而不是偏微分方程和谱理论。
摘要这些笔记的主要目标是对问题框架的精心介绍。此框架允许使用四个原理或公理的共同集对经典概率理论,热力学和量子概率进行表述。,它为计算未来事件的概率提供了一种一般的预后算法。我们的原则严格区分了可能性和外来。一个良好的可能性空间和结果的样本空间可以解决众所周知的悖论,并做出诸如“许多世界”或“许多思想”“超级流动”之类的量子解释。此外,从我们的角度来看,超级原则和系统的纠缠获得了新的含义。这个框架在希尔伯特的意义上是一种公理的概率方法。他在1900年向巴黎国际数学家国际大会提出的二十三个开放问题中的第六个问题中要求公理地对待概率。我们已将框架应用于各种问题,包括经典问题,统计力学和热力学,多个缝隙的差异,光的重新启动,干涉仪,延迟选择实验以及Hardy的Paradox。特别重点也放在C.F.vonweizséacker的作品,他早在1950年代就发展了他的理论。今天,领先的研究人员以“ Simons在量子场,重力和信息方面的合作”的名义继续他的工作。