摘要。不受限制的对抗攻击对深度学习模型和对抗性防御技术构成了严重威胁。它们为深度学习应用带来了安全问题,因为它们可以有效地绕过防御机制。然而,以前的攻击通常直接直接将投影梯度下降(PGD)梯度注入生成模型的采样中,这些模型并非理论上是可以预见的,因此通过合并对抗性目标,尤其是对于像ImageNet这样的大型数据集的基于GAN的方法,从而产生了不切实际的示例。在本文中,我们提出了一种称为Advdiff的新方法,以生成具有扩散模型的不受限制的对抗示例。我们设计了两种新型的对抗引导技术,以在扩散模型的反向生成过程中进行对抗采样。这两种技术通过解释的目标分类器的梯度来产生高质量的对抗性示例,在产生高质量的对抗性示例中是有效且稳定的。对MNIST和IMAGENET数据集的实验结果表明,Advdiff在产生无限制的对抗示例方面有效,在攻击性能和发电质量方面,其表现优于最先进的不受限制的对抗攻击方法。
摘要 MAD7 是从直肠真杆菌中分离出来的一种工程化的 2 类 VA 型 CRISPR-Cas (Cas12a/Cpf1) 系统。与 Cas9 类似,它是一种 RNA 引导的核酸酶,在大肠杆菌和酵母细胞中具有基因编辑活性。本文报告称,MAD7 能够分别在人类 HCT116 和 U2OS 癌细胞系中产生内源基因的插入/缺失和荧光基因标记。此外,MAD7 非常擅长在小鼠和大鼠胚胎中产生插入/缺失、小 DNA 插入(23 个碱基)和 1 至 14 kb 大小的较大整合,从而产生活产转基因动物。由于不同的原间隔区相邻基序要求、小引导 RNA 和高效的靶向基因破坏和插入,MAD7 可以扩展 CRISPR 工具箱,用于跨不同系统和模型生物进行基因组工程。
潜在的生成模型(例如,稳定的扩散)变得越来越流行,但是关于这些模型产生的图像的潜在滥用,出现了概念。因此,有必要通过推断特定的潜在生成模型来分析特定图像来分析图像的起源。大多数现有的方法(例如,图像水印和模型指纹打印)在训练或发电过程中需要额外的步骤。这些要求限制了它们在生成的图像上的使用情况,而无需此类操作,额外的操作可能会损害生成的图像的质量。在这项工作中,我们询问是否有可能有效,有效地追踪具有上述要求的特定潜在生成模型所产生的图像。为了研究此问题,我们设计了一种基于潜在反转的方法,称为L atent t Racer,以通过检查检查的图像是否可以使用倒置的潜在输入来构造了检查的图像,以追踪检查模型的固定图像。我们利用基于级别的潜在反转,并确定基于编码的初始化对我们方法的成功至关重要。我们对最先进的潜在生成模型(例如稳定的扩散)进行的实验表明,我们的方法可以以很高的精度和效率来区分被检查模型和其他IMEGES生成的图像。我们的发现表明,当今的潜在生成生成的图像自然是由源模型中使用的解码器自然水印的有趣可能性。代码:https:// github。com/zhentingwang/litenttracer。
基于深度学习的图像生成方法已被广泛用于克服数据不足。在医疗领域也是如此,数据短缺问题经常发生。在本研究中,我们提出了多模态脑肿瘤磁共振成像(MRI)生成框架,称为解缠结潜在扩散模型(DLDM),以解决医学成像中的数据不足问题。我们训练一个自动编码器,将多模态 MRI 图像的特征解缠结为模态共享和模态特定表示。通过利用从自动编码器学到的特征解缠结,我们能够训练一个可以生成模态共享和模态特定潜在向量的扩散模型。我们用 clean-FID 和改进的准确率和召回率评估了我们的方法。将结果与基于 GAN 的模型 StyleGAN2 进行了比较。关键词:生成、多模态、MRI、特征解缠结、扩散模型。
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
(a)国家有权使用国家数据提供的承包商提供的Genai培训数据,其中可能包括非公开数据。国家应保留州数据使用中的所有所有权和知识产权,以增强Genai培训数据。(b)承包商有权检查提出的任何公共数据以增加Genai培训数据,例如通过请求访问,副本或数据报告,以验证其遵守合同条款和条件。3。genai的其他安全要求:除了一般规定的第13、21和22条外,承包商应允许国家合理访问Genai安全日志,延迟统计数据以及其他影响该合同和生成数据的相关Genai安全数据,无需支付国家。4。数据和提示的机密性:承包商应防止未经授权的使用和披露承包商根据本合同开发的任何提示,以及此类提示产生的任何生成的数据。5。提示和生成内容中的权利:
什么是信息和数字素养如何访问信息来源什么是大语言模型生成的A.I.什么是及时的工程使学生接触各种大型语言模型生成的A.I.产品及其输出展示能够访问大型语言模型生成AI的能力。根据可用性,相关性和准确性的输出练习与以下基本研究相关的信息素养技能所需的结果;
•不受限制的对抗攻击旨在使用生成模型生成自然的对抗示例。•先前的攻击直接将类似PGD的梯度注入生成模型的采样,从而损害发电质量。
无条件产生,该算法没有输入;该模型生成一个新的图像,该图像与培训数据共享特征。相比之下,随着统一的生成,该算法的输入是有效的类选择。例如,在MNIST数据集中,我们可以指示该模型生成数字的图像在0到9之间,从而从指定类中产生新的图像。在DDPM框架内,U-NET充当神经网络,以预测每个时间步处的噪声。对U-NET的输入是时间t的图像,时间嵌入和上下文嵌入。U-NET输出ϵ具有与输入图像相同的输入图像特征维度。this ϵ表示要从t处的库图像中减去的估计噪声,以在t-1处产生图像,从而使其更接近新图像。