通过脑机接口,重建所看到的人脑活动图像连接了人机视觉和计算机视觉。由于个体之间大脑功能存在固有差异,现有文献主要集中于使用每个人各自的脑信号数据为每个人获取单独的模型,而忽略了这些数据之间的共性。在本文中,我们设计了心理测量学,这是一个全方位模型,用于重建从不同受试者获得的功能性磁共振成像 (fMRI) 图像。心理测量学包含一个全方位专家混合 (Omni MoE) 模块,其中所有专家共同努力捕捉受试者间的共性,而与特定受试者参数相关的每个专家则负责处理个体差异。此外,心理测量学还配备了一种检索增强推理策略,称为 Ecphory,旨在通过检索预先存储的特定受试者记忆来增强学习到的 fMRI 表征。这些设计共同使心理测量变得万能而高效,使其能够捕捉受试者之间的共性和个体差异。因此,增强的 fMRI 表征可作为条件信号来指导生成模型重建高质量逼真的图像,从而使心理测量在高级和低级指标方面都成为最先进的技术。
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
本报告仅供参考和教育之用。CEF 不提供税务、法律、投资或会计建议。本报告无意提供税务、法律、投资或会计建议,也不应依赖这些建议。本报告中的任何内容均不作为投资建议、买卖要约或要约邀请,或作为对任何证券、公司或基金的推荐、认可或赞助。CEF 对您做出的任何投资决定概不负责。您应对自己的投资研究和投资决定负责。本报告并非投资的一般指南,也不是任何特定投资建议的来源。除非归因于他人,否则所表达的任何意见仅是我们当前的意见。所提供的某些信息可能由第三方提供。CEF 认为此类第三方信息可靠,并已检查公共记录以尽可能验证它,但不保证其准确性、及时性或完整性;并且它可能会随时更改,恕不另行通知。
Q.1(a)l 1 1 1 1,12(b)L 2 1 1,12(c)L 3 1 1,12 Q.2(a)Q.2(a)L 1 1 1 1,12(b)L 2 1 1,12(c)L 3 1 1 1,12 Q.3(a)Q.3(a)L 1 2 1,12(b)L 1 2 1,12(b)L 2 1,1,1,1,1,1,12(c)l 3 3 3 2 1,1,1,1,1,1,1 b) L 2 2 1,12 (c) L 3 2 1,12 Q.5 (a) L 1 3 1,12 (b) L 2 3 1,12 (c) L 3 3 1,12 Q.6 (a) L 1 3 1,12 (b) L 2 3 1,12 (c) L 3 3 1,12 Q.7 (a) L 1 4 1,12 (b) L 2 4 1,12 (c) L 3 4 1,12 Q.8(a)L 1 4 1,12(b)L 2 4 1,12(c)L 3 4 1,12 Q.9(a)L 1 5 1,12(b)L 2 5 1,12(c)L 3 5 1,12 Q.10 Q.10(a)L 1 5 1,12(b)L 2 5 1,12(b)L 2 5 1,12(b)L 2 5 1,12(c)L 3 5 1,12(c)
本文提出了一个基于代理的模型 (ABM),用于描述技术范式和新部门的内生性出现,其中包括不同的劳动力创造和破坏模式以及消费动态。该模型以劳动力增强型 K+S ABM 为基础,研究了从不同形式的技术变革中产生的长期劳动力需求模式。它提供了一个多层次、综合的视角来审视所谓的未来工作情景,而这些情景目前通常局限于公司层面或短期部门分析,并研究了劳动力创造和破坏趋于平衡的条件。这是一种相对公平和稳定的收入分配,由福特式的劳动力市场监管制度保证,保证了该模型永远不会达到完全技术失业的阶段。技术变革与总需求之间的协调模式也由不断增加的产品复杂性来确保,产品复杂性不断增加,从而不断吸收劳动力。
用于量子动力学模拟的量子算法传统上基于实现时间演化算子的 Trotter 近似。这种方法通常依赖于深度电路,因此受到可用噪声和近期量子硬件的重大限制的阻碍。另一方面,变分量子算法 (VQA) 已成为不可或缺的替代方案,可在当今硬件上进行小规模模拟。然而,尽管最近为量子动力学开发了 VQA,但尚未对其效率和可扩展性进行详细评估。为了填补这一空白,我们应用了基于 McLachlan 原理的 VQA 来模拟自旋玻色子模型在不同水平的实际硬件噪声以及不同物理状态下的动力学,并讨论了算法的准确性和随系统大小而变化的缩放行为。我们观察到变分方法与一般的、物理驱动的波函数假设相结合使用时具有良好的性能,并将其与传统的一阶 Trotter 演化进行了比较。最后,基于此,我们对经典难处理系统的模拟进行了扩展预测。我们表明,尽管变分法明显降低了量子门成本,但其当前实现不太可能为时间相关问题的解决带来量子优势。
•此配置文件中显示的性能结果可能包括策略中注册的Morgan Stanley帐户的组合。这些在投资结果和投资组合的季度收益部分中没有选择的uma标签。•结果还显示了经理自己在其投资策略版本中投入的帐户的综合表现,这是在策略在SELECT UMA计划中的成立之前的表现。这些以灰色和标记的管理器为阴影。尽管这种性能是相关的,但并不能反映摩根士丹利在提供此策略中所扮演的角色,这反映在投资结果的未成阴影部分和资料组合季度收益部分。摩根士丹利(Morgan Stanley)与经理一起在同时工作,将此策略交付给其客户。出于这个原因,摩根士丹利(Morgan Stanley)并未在过渡月之后展示经理自己投资于投资策略版本的帐户的组合。因此,经理的结果和策略的结果可能会有所不同,如下所述。•如果经理的结果与策略结果之间的过渡月发生在一个四分之一的中间,则该季度或一年将在投资业绩和投资组合季度收益部分中呈现蓝色,并标记为过渡。
人工神经网络(ANN)是一个信息或信号处理系统,由大量简单的处理元素组成,这些元素与直接链接互连,并配合以执行并行分布式处理以解决所需的计算任务。神经网络以类似的方式处理信息。ann的灵感来自生物神经系统的方式,例如大脑的作品 - 神经网络以身作则。ANN采用与常规计算相比,解决问题的方法。传统的计算机系统使用算法方法,即遵循一组说明以解决问题。将解决问题的能力限制在我们已经理解并知道如何解决的问题上。但是,神经网络和常规算法计算不在竞争中,而是相互竞争。有些任务更适合于算法方法(例如算术操作)和更适合神经网络方法的任务。
摘要:二维(2D)材料中的本地带隙调整对于电子和光电设备而言至关重要,但是在纳米级实现可控制和可重复的应变工程技术仍然是一个挑战。在这里,我们通过扫描探针报告了热机械纳米引导,以在2D过渡金属二核苷剂和石墨烯中创建应变纳米图案,从而在空间分辨率下以调制的带隙启用任意模式,以降低到20 nm。2D材料通过范德华的相互作用与下面的薄聚合物层相互作用,由于加热探针的热和压痕力而变形。特别是,我们证明了钼二硫化(MOS 2)的局部带隙被空间调节高达10%,并且可以约180 MeV的幅度调整为180 MEV,以菌株的线性速率约为-70 meV。该技术提供了一种多功能工具,用于研究具有纳米尺度分辨率的2D材料的局部应变工程。关键字:2D材料,应变纳米图案,钼二硫化,局部带隙,热扫描探针光刻,尖端增强的拉曼光谱■简介
