用于量子动力学模拟的量子算法传统上基于实现时间演化算子的 Trotter 近似。这种方法通常依赖于深度电路,因此受到可用噪声和近期量子硬件的重大限制的阻碍。另一方面,变分量子算法 (VQA) 已成为不可或缺的替代方案,可在当今硬件上进行小规模模拟。然而,尽管最近为量子动力学开发了 VQA,但尚未对其效率和可扩展性进行详细评估。为了填补这一空白,我们应用了基于 McLachlan 原理的 VQA 来模拟自旋玻色子模型在不同水平的实际硬件噪声以及不同物理状态下的动力学,并讨论了算法的准确性和随系统大小而变化的缩放行为。我们观察到变分方法与一般的、物理驱动的波函数假设相结合使用时具有良好的性能,并将其与传统的一阶 Trotter 演化进行了比较。最后,基于此,我们对经典难处理系统的模拟进行了扩展预测。我们表明,尽管变分法明显降低了量子门成本,但其当前实现不太可能为时间相关问题的解决带来量子优势。
主要关键词