Loading...
机构名称:
¥ 2.0

神经形态计算使用受大脑启发的基本原理来设计电路,以卓越的能效执行人工智能任务。传统方法受到传统电子设备实现的人工神经元和突触的能量区域的限制。近年来,多个研究小组已经证明,利用电子的磁性和电学特性的自旋电子纳米器件可以提高能源效率并减少这些电路的面积。在已使用的各种自旋电子器件中,磁隧道结因其与标准集成电路的既定兼容性和多功能性而发挥着重要作用。磁隧道结可以用作突触,存储连接权重,用作本地非易失性数字存储器或连续变化的电阻。作为纳米振荡器,它们可以充当神经元,模拟生物神经元组的振荡行为。作为超顺磁体,它们可以通过模拟生物神经元的随机尖峰来实现这一点。磁结构(如畴壁或 skyrmion)可以通过其非线性动力学配置为用作神经元。神经形态计算与自旋电子器件的几种实现方式展示了它们在这一领域的前景。用作可变电阻突触时,磁隧道结可在联想记忆中执行模式识别。作为振荡器,它们可在储层计算中执行口语数字识别,当耦合在一起时,它们可对信号进行分类。作为超顺磁体,它们可执行群体编码和概率计算。模拟表明,纳米磁体阵列和 skyrmion 薄膜可作为神经形态计算机的组件运行。虽然这些例子展示了自旋电子学在这一领域的独特前景,但扩大规模仍面临一些挑战,包括

神经形态自旋电子学

神经形态自旋电子学PDF文件第1页

神经形态自旋电子学PDF文件第2页

神经形态自旋电子学PDF文件第3页

神经形态自旋电子学PDF文件第4页

神经形态自旋电子学PDF文件第5页