• 在 AI Auto 模式下,室内机显示屏上会出现 (AI Auto) 和 (Wi-Fi) 指示。• 如果收集的用户模式不够,则设定温度设置为 75°F。• 在 AI Auto 模式下,设定温度控制在 72 °F 至 79 °F 范围内。设定温度也可以手动更改。• 如果在 AI Auto 模式下手动更改设定温度,它会自动重新请求 AI 首选温度并在 1 小时后更改回来。• 按下遥控器上的 (Mode) 按钮可以取消 AI Auto 模式。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
摘要简介:抗癌药物是全球药物不良反应 (ADR) 负担中的重要一环。任何量化其严重程度并提供最新知识的尝试都将有助于肿瘤学家开出更安全的处方。目的:这项观察性随访研究针对接受抗癌治疗的新诊断癌症患者进行,旨在确定 ADR 的频率、严重程度、因果关系、可预测性和可预防性。受试者和方法:对患者进行 6 个月的随访,以了解不良事件的发生情况。使用 IBM SPSS Statistics for Windows,版本 22.0。(纽约州阿蒙克)分析数据,并以描述性统计的形式呈现。结果:每位患者平均被开具约 6.85 ± 1.51(平均值 ± 标准误差)种药物。所有接受抗癌化疗的患者(100%)均出现 ADR。脱发、恶心呕吐、灼热刺痛和麻木是最常见的 ADR。女性脱发 ( P < 0.0004)、恶心 ( P < 0.03) 和口腔溃疡 ( P < 0.02) 的发生率较高。最高反应为 2 级 (69.53%)。大多数反应 (75.80%) 出现在接受第一个周期的 10 天内。99.58% 的反应并不严重。根据世界卫生组织 - 乌普萨拉监测中心的标准,99.47% 的 ADR 属于可能类别。根据 Naranjo 算法,100% 的 ADR 属于很可能类别。大约 94.80% 的反应被发现是可预测的。大约 56.47% 的反应可能是可以预防的,43.53% 的反应是无法预防的。结论:在新诊断的癌症患者中出现了多种 ADR。其中大多数是可预测的、严重程度轻度至中度的、不严重的且可以预防的。大多数 ADR 会随着时间的推移而恢复。
摘要 在人工智能的发展趋势下,生物识别已成为一种广泛应用的热门技术,在金融、非营利组织、海关等各种场合均有应用,但传统的身份识别工具存在易被泄露、窃取或遭受黑客攻击的风险。脑电图(EEG)是生物识别研究的一种方法,它通过采集头皮特定位置的电磁波来反映个体的脑部活动,大量研究证明脑电图中的α波段可以区分个体差异,其重要性在临床神经生理中也得到了证实。在脑电生物识别中,大多数研究使用复杂的电极通道来覆盖整个头部来收集脑电波记录,但这样的设备无法满足生物识别应用对可采集性的要求。
摘要:数字经济引发了生活各个方面的快速变革,逐渐成为促进各国整体经济发展的重要经济组成部分。零工经济模式在全球范围内越来越受到关注,越南也不例外。这种模式为工人提供了大量的就业机会,特别是那些具有高级专业技能、自我管理能力和独立工作能力的工人。这些机会不仅有可能增强越南劳动力,而且有可能彻底改变越南劳动力。然而,零工经济模式也存在许多风险和挑战,可能会影响工人的就业稳定性。本文全面概述了零工经济模式,分析了其对越南工人的影响,并为越南未来的发展提出了几点建议。关键词:零工经济;影响;越南工人;企业;数字经济。
关于FDP:有关人工智能(AI)的教师发展计划(FDP),用于计算机视觉,医学成像应用将帮助教育者和研究人员了解AI基础知识及其如何应用于具有多个安全应用的医学成像技术。参与者将探索机器学习和深度学习概念,专注于使用AI进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:针对计算机视觉应用程序的最新实施介绍。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,SVM分类,神经网络和应用程序。深度学习方法的简介和基于DL的其他架构及其应用。用于计算机视觉,生物特征和医学成像实现的深度学习体系结构。医学图像数据处理和分析。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等使用张量流/Pytorch识别人类活动/动作/生物识别。张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。使用Python/Matlab的动手会话。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。
Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
该计划的首要目标是创建一个“通用”模型,该模型将对各种独居老人都适用,无论其收入水平、居住地和其他个人情况如何。它还必须成本低廉、可扩展,并能够利用用户的生活经验。最后,它必须建立在确凿的证据之上,证明整体方法将产生预期的效益。为此,来自多个来源的想法和研究都融入了开发过程。