Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
摘要:本文系统地研究了郑州航空大学的研究生英语课程的生态教学模式的构建和实践,探索了其在大学英语教育中的应用和有效性。文献综述从生态系统理论的角度及其对教育的影响开始,分析了在国内和国际上对生态教学的相关理论。它提出了生态教学模式的基本原理,例如可持续性,互动性和整体主义。通过定性和定量研究方法的结合,设计了特定的教学实践方案,并通过数据收集和分析来评估生态教学模式的实施效果。这项研究发现,生态教学模式显着增强了学生的英语应用能力和学习动机,促进了教师与学生之间的互动,并建立了积极的学习生态环境。案例研究表明,在郑州航空大学实施生态教学时,教师根据学生反馈不断调整其教学策略,从而有效提高教学质量和学生满意度。本文总结了生态教学模式的实际价值并提出未来的研究方向,强调了生态学观点在外语教育领域的重要性及其潜在的政策含义。
taxabind通过结合多种模型来执行物种分类来解决对生态问题的更强大和统一方法的需求(这是什么样的熊?),分配映射(在哪里?),以及与生态学有关的其他任务。该工具也可以用作与生态建模有关的大型研究的起点,科学家可能用来预测动植物种群的转变,气候变化的影响或人类活动对生态系统的影响。
Hannah P. Gideon, 1 , 2 , 23 Travis K. Hughes, 3 , 4 , 5 , 23 Constantine N. Tzouanas, 3 , 4 , 5 , 23 Marc H. Wadsworth II, 3 , 4 , 5 , 6 Ang Andy Tu, 7 Todd M. Gierahn, 7 Joshua M. Peters, 4 , 7 Forrest F. Hopkins, 4 , 8 Jun-Rong Wei, 4 , 8 Conner Kummerlowe, 9 Nicole L. Grant, 1 Kievershen Nargan, 10 Jia Yao Phuah, 1 H. Jacob Borish, 1 Pauline Maiello, 1 Alexander G. White, 1 Caylin G. Winchell, 1 , 2 , 11 Sarah K. Nyquist, 3 , 4 , 5 , 9 , 12 Sharie Keanne C. Ganchua, 1 Amy Myers, 1 Kush V. Patel, 1 Cassaundra L. Ameel, 1 Catherine T. Cochran, 1 Samira Ibrahim, 3 , 4 , 5 Jaime A. Tomko, 1 Lonnie James Frye, 1 Jacob M. Rosenberg, 4 , 8 , 13 Angela Shih, 13 Michael Chao, 4 , 8 Edwin Klein, 14 Charles A. Scanga, 1 , 2 Jose Ordovas-Montanes, 4 , 5 Bonnie伯格(Berger),约书亚·T·马蒂拉(Joshua T. Shalek 3,4,5,6,6,18,24,25, * 1微生物学和分子遗传学系,匹兹堡大学医学院,宾夕法尼亚州匹兹堡,宾夕法尼亚州匹兹堡研究中心,匹兹堡,宾夕法尼亚州匹兹堡大学,美国宾夕法尼亚州匹兹堡大学,美国3号宾夕法尼亚州匹兹堡大学3.哈佛大学,马萨诸塞州剑桥,美国5麻省理工学院和哈佛大学,马萨诸塞州剑桥市6美国6化学系,马萨诸塞州理工学院,马萨诸塞州剑桥市,美国7 7生物工程系),sfortune@hsph.harvard.edu(S.M.F.美国马萨诸塞州波士顿,马萨诸塞州波士顿公共卫生学院9计算与系统生物学计划,马萨诸塞州技术研究所,美国马萨诸塞州剑桥市,美国10号非洲卫生研究所,南非德班,南非,肺部,过敏和重症监护医学司,匹兹堡大学,匹兹堡大学,匹兹堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,美国12级计算机。美国马萨诸塞州剑桥市技术,13美国马萨诸塞州马萨诸塞州马萨诸塞州综合医院,美国马萨诸塞州波士顿,美国14号实验室动物研究部,匹兹堡大学,匹兹堡宾夕法尼亚州匹兹堡大学15美国匹兹堡,匹兹堡大学匹兹堡大学的传染病学系,美国15南非德班,纳塔尔17化学工程系,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国马萨诸塞州剑桥研究所18宾夕法尼亚州剑桥市的马萨诸塞州综合癌症研究所,马萨诸塞州科技研究所19 of KwaZulu-Natal, Durban, South Africa 21 Department of Infection and Immunity, University College London, London, UK 22 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA 23 These authors contributed equally 24 These authors contributed equally 25 Lead contact *Correspondence: joanne@pitt.edu (J.L.F.),shalek@mit.edu(A.K.S。)https://doi.org/10.1016/j.immuni.2022.04.004
摘要 - 预测衰老个体临床下降的轨迹是一个紧迫的挑战,尤其是对于患有轻度认知障碍,阿尔茨海默氏病,帕金森氏病或血管性痴呆症患者而言。准确的预测可以指导治疗决策,确定风险因素并优化临床试验。在这项研究中,我们比较了在临床痴呆率评级量表“盒子总和”评分(SOBCDR)中,在2年间隔内进行了两种深度学习方法。这是痴呆症研究中的关键指标,评分范围从0(无损害)到18(严重损害)。为了预测下降,我们训练了一个混合卷积神经网络,该网络将3D T1加权的脑MRI扫描与表格临床和人口统计学特征(包括年龄,性别,体重指数(BMI)和基线SOBCDR)相结合。我们针对Autogluon进行了基准测试,Autogluon是一个自动化的多模式学习框架,选择了适当的神经网络体系结构。我们的结果证明了将图像和表格数据组合在临床应用预测建模中的重要性。深度学习算法可以融合基于图像的大脑特征和表格临床数据,并具有衰老和痴呆症的个性化预后。
属于伊蚊属的毒性昆虫是病毒和丝状病原体的载体。Ades bopotus是一个越来越重要的向量,因为它在全球范围内的迅速扩展。在全球气候变化和人畜共患疾病的出现的背景下,需要使用现场应用的识别工具来加强对具有医疗兴趣的节肢动物的昆虫学调查的努力。大规模的蚊子对蚊子的主动调查需要熟练的技术人员和/或昂贵的技术设备,这使大量命名物种更加困惑。在这项研究中,我们通过利用机翼干涉模式显示的特定物种标记来开发出一种伊蚊物种的自动分类系统。保留494个24 Aedes spp的显微照片的数据库。记录了十多张图片的人经历了一种深入的学习方法,以训练卷积神经网络并测试其在属,亚属和物种分类学水平上对样本进行分类的准确性。我们在属水平上记录了95%的准确性,在三个测试的亚属中,两种(ochlerotatus and stegomyia)的准确性> 85%。最后,将8个精确地分类为10个Aedes sp。经历了总体准确性> 70%的培训过程。总的来说,这些结果证明了这种方法对艾德斯物种识别的潜力,并将代表未来实施大规模昆虫学调查的工具。
自动驾驶汽车(AVS)需要可靠的交通标志识别和健壮的车道检测功能,以确保在复杂和动态的环境中实现安全的导航。本文介绍了一种综合方法,结合了先进的深度学习技术和多模式大型语言模型(MLLMS),以实现全面的道路。对于交通标志识别,我们系统地评估了Resnet-50,Yolov8和RT-Det,在Resnet-50中以99.8%的状态效果达到99.8%,Yolov8的精度为98.0%,尽管具有较高的计算机复杂性,但在RT-DECT上的精度达到了96.6%的精度。对于车道检测,我们提出了一种基于CNN的分割方法,通过多项式曲线拟合增强了,该方法在有利条件下肝脏高精度。更重要的是,我们引入了一个轻巧的,多模式的,基于LLM的框架,该框架直接进行了调整的指令,以调整您的小而多样化的数据集,从而消除了对Intial预处理的需求。该框架有效地处理了各种车道类型,复杂的交叉点和合并区域,可以通过不利条件下的推理来提高车道检测可靠性。尽管有限制可用的培训资源,但我们的多模式方法表明了高级推理能力,达到了53.87%的所有准确性(FRM),这一问题总体上是82.83%的总体确保(QNS),在清晰的条件下,泳道的检测准确性为99.6%,在夜间和93.0%的情况下为93.0%的雨水,以及8.0%的雨水,以及8.8的范围。道路退化(95.6%)。拟议的综合框架显着增强了AV感知的可观性,从而极大地促进了在各种和充满挑战的道路方案中更安全的自主驾驶。