观察表明,浅水海底地形通常具有由各种海洋学和地质过程产生的带限方向谱。这种定向底部特征对三维低频声传播有明显的影响。使用理想化的直海底波纹模型进行的分析研究表明,声能可以在相邻波纹之间部分传导,这种传导将影响浅水中的声传播。在我们的工作中,我们还研究了理想化的弯曲海底波纹引起的传导和折射。先前的研究表明,非线性内波也可以产生声波管道。使用我们的理想模型对这两种不同的管道进行了比较分析。研究了内部波和水深测量对内部波前和底部波纹的各种相对方向的综合影响。对三维声音在真实水深测量和内部波波动中的传播进行了数值模拟。总之,在研究浅水中的三维声传播时,需要考虑水柱波动和水深测量变化。
如果应用程序使用多次,则每次都必须将其转换为机器语言。解释性语言通常比编译器语言需要更多的计算机时间进行离散事件模拟,因为相当一部分离散事件模拟程序被反复使用。图 i 包含计算机示例
本文介绍了 DLR 目前为支持空中加油自动化研究活动而开展的建模和仿真活动。在空中加油机动过程中,加油机和受油机需要飞得很近,这会导致它们之间产生非常显著的气动相互作用。两架飞机也会影响探头和锥套的运动,这也需要进行建模。本文概述了开发的模型和仿真基础设施、它们的主要功能以及生成支持此建模的数据所需的工作。与许多其他具有类似建模需求的工作不同,RANS CFD 计算比更简单的技术更适合用于对加油机、接收器、软管和锥套之间的气动相互作用进行建模。实时动态模型基于两个完整的飞机动态模型。一整套模拟程序(包括现代客机飞行控制系统的所有复杂性)用于每架飞机。耦合的模拟程序部署在 DLR AVES 模拟器中。为此,需要对 AVES 核心程序及其配置进行许多修改,以将其扩展为能够模拟两架飞机的编队:文中从功能的角度提到了其中一些修改,但没有过多地深入 AVES 特定的实施细节。
1 小组作业;小组将: 阅读作业,调查和讨论与课程内容相关的最新主题。 根据对其他国家实施的大型项目样本的调查,编写一份报告,重点介绍挑战、成功案例和经验教训。 详细讨论近期在也门实施类似项目的可行性。 熟悉并使用专用的可再生能源系统模拟程序。 学期末(第 14 周),学生小组将提交最终报告,并在全体会议上进行 PowerPoint 演示。
校准模拟是使用现有的建筑模拟计算机程序并“调整”或校准程序的各种输入的过程,以便观察到的能源使用情况与模拟程序预测的能源使用情况密切匹配。采用这种方法的两个主要原因是它允许 (1) 更可靠地识别现有建筑中的节能和需求减少措施(涉及设备、操作和/或控制变化)和 (2) 在实施这些措施后增强对监测和验证过程的信心。从历史上看,校准过程是一种艺术形式,不可避免地依赖于用户知识、过去的经验、统计专业知识、工程判断和大量的反复试验。尽管专业界对此有广泛的兴趣,但不幸的是,尚未发布关于如何使用详细的模拟程序进行模拟校准的共识指南。ASHRAE 发起了一项研究项目 (RP-1051),旨在从现有研究成果中筛选出最佳工具、技术、方法和程序,并开发一种连贯而系统的校准方法,其中包括“参数估计”和校准模拟中不确定性的确定。本文对校准模拟技术进行了中肯而详细的文献综述,描述了它们的优点、缺点和适用性,从而作为在后续论文中报告研究项目结果的先行者。
项目描述 该项目将综合模拟方法融入城市可再生建筑和社区优化 (URBANopt) 平台,以便对相连建筑区域内的废热源进行详细分析。这些进步将通过将 URBANopt 软件开发工具包 (SDK) 与开源 Modelica 编程语言和下一代 EnergyPlus Spawn(美国能源部 (DOE) 支持的建筑能量模拟程序)相结合来实现。更新后的 URBANopt 平台将能够评估与商业和住宅建筑相关的工业流程和废热机会。
我们打算证明,我们可以构建专用硬件,使用忆阻器和忆电容将神经网络直接映射到该硬件上,从而提高网络的能源效率。我们将使用以集成电路为重点的模拟程序 (SPICE) 来模拟我们的忆电容和忆阻器。使用此模型,我们将创建一个忆阻和忆电容元件的储存器,并在一系列忆电容与忆阻器比率中评估我们的设计,同时测试储存器结构,包括小世界、交叉开关、随机、分层和幂律实现。我们假设我们的设计将大大提高神经网络的能源效率和性能。
A.3。 分水岭界限时,在划定水域界限时,从MPCA和顾问开发的适当水文模拟程序(HSPF)模型(HSPF)模型(HSPF)模型(从SAM文件下载SAM Project或与Chuck.regan@regan@state.mn.mn.us for Geagraphice信息系统[sam for Geagraphice信息系统)[下载SAM Project in Sam Project in Sam Project of SAM Project in Platershed Borgaries。 如果没有用于流域的HSPF模型,则可以使用其他模型的流域边界。 HSPF边界的全州GIS层可在env_watershed_hspfmodel_catchments内部获得。 使用此层时,请查看元数据并将流域边界与SAM项目中的边界进行比较。 将来,该层可以通过明尼苏达州地理空间共享提供。 请与Ashley.ignatius@state.mn.us或chuck.regan@state.mn.us联系。A.3。分水岭界限时,在划定水域界限时,从MPCA和顾问开发的适当水文模拟程序(HSPF)模型(HSPF)模型(HSPF)模型(从SAM文件下载SAM Project或与Chuck.regan@regan@state.mn.mn.us for Geagraphice信息系统[sam for Geagraphice信息系统)[下载SAM Project in Sam Project in Sam Project of SAM Project in Platershed Borgaries。如果没有用于流域的HSPF模型,则可以使用其他模型的流域边界。HSPF边界的全州GIS层可在env_watershed_hspfmodel_catchments内部获得。使用此层时,请查看元数据并将流域边界与SAM项目中的边界进行比较。将来,该层可以通过明尼苏达州地理空间共享提供。请与Ashley.ignatius@state.mn.us或chuck.regan@state.mn.us联系。