b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
July Cun 1.2,3, 9.10 , Elisha C. Clark 11 , Clai A. Stone 9 , 14.15 , Soania Cohen 14.15 , Genevieve M. Born Quinano-Ruboo 1 , Kevibio 1 , Judea M. Jude Koeh 11 , 11 , Vwalan Vamba 12.16 , 12.16.17 ,17 , 17 , Rossell. 5.13,&& upter Baker Baker是1.2.19,&
1 Strasbourg大学,CNRS,实验室图像Ville et Environnement(Live),UMR7362,Strasbourg,法国2号法国环境和能源管理机构,法国3章鱼3号章鱼实验室,法国La Madeleine,法国4实验室4个气候和环境科学实验室
从理论的角度克服了这个问题,我们开发了Bosse,这是一个观察系统模拟实验的生物多样性。BOSSE在植被特性随着气象条件的函数而变化并采用不同的空间模式的时间时模拟动态场景。高空间分辨率场景可用于量化植物特征的植物功能多样性。此外,博斯可以模拟与气象学植物特征相一致的高光谱反射因子,阳光诱发的叶绿素荧光和土地表面温度。可以在不同的空间和时间分辨率下生成光谱图像,从而使我们能够测试不同的方法,指标和方法来估计植物功能多样性。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
5宁博海洋学研究所,宁波315832,中国在这项工作中,作者提出了一种新型策略,以通过Nano-Graphene空心球从Prussian Blue Analogue CO(CO 3 [CO(CN)6] 2。使用低成本材料的单锅溶液方法设计用于通过不同温度和前体的HCl蚀刻步骤进行退火来合成阴极。这使该前体制造的Li -S电池感到惊讶,表现出了显着的电荷 - 均电稳定性(570.4 mA H G -1(以1C电流密度为1C)和出色的速率性能(1145.5,717.9,672.5 ma Hg -1 in 0.1,1.0,2.0 Ag -1.0,2.0 Ag -1 ag -1 ag -1 ag -1 restive dys crespenty d pertive of。结果表明,稳定的三维多层空心球结构减轻了硫的体积膨胀,这对多硫化物的吸附产生了重大影响,并抑制了“穿梭效应”。此外,在这种结构中,氮的丰富掺杂产生了许多缺陷和活性位点,从而改善了多硫化物的界面吸附。这是CO 3 [CO(CN)6] 2的富有想象力的应用,充当Li-S电池的阴极材料,该材料提供了一种独特的材料设计方法,可以实现用于Li-S电池的硫阴极的高性能。
粮食不安全是非洲气候变化带来的最大风险之一,那里有90%至95%的非洲粮食生产是雨天,很大一部分人口已经面临慢性饥饿和营养不良。尽管有几项研究发现了在气候变化情景下未来农作物产量损失的有力证据,但农作物和地区之间存在广泛的差异以及大型建模不确定性。这种不足的很大一部分源于气候预测,因为气候模型可能在模拟未来的降水和温度变化方面有所不同,这可能导致未来的作物产生情况。这项工作研究了西非气候变化对西非玉米,小米和高粱作物产量的影响,使用耦合模型对比项目对比项目第五阶段(CMIP5)和新一代来自耦合模型模型库库对间项目的气候模型的预测(CMIP5)(CMIP6)(CMIP6)。我们使用模拟作物建模框架来模拟历史和未来的作物产量,并使用引导技术来评估CMIP5和CMIP6合奏之间作物生产力的预计变化。使用新一代气候模型CMIP6,我们发现CMIP5模拟所示的负作物产量预测大大降低,当大气CO 2浓度在作物模型中所考虑时,也大大增加了作物产量。这种结果突出了在评估该地区气候变化的影响以及最终用户预期适应策略的差异方面仍然存在的巨大不确定性。CMIP5和CMIP6模拟之间作物产量影响的这些差异主要是由于西非温度和沉淀的气候不同。到本世纪末,CMIP6预测在本世纪中叶和较小程度上都显着湿润和凉爽。
我们介绍了在广义上下文情景中的一组量子相关集的半限定性放松的层次结构。这构成了一个简单且通用的工具,用于界定量子上下文的大小。为了说明其效用,我们使用它来确定对以前最大违规行为的最大量子违规违规。然后,我们走得更远,并使用它来证明无法用纯净的状态来解释某些制备上下文的相关性,从而表明混合状态是上下文中必不可少的资源。在本文的第二部分中,我们将注意力转移到了一般操作理论中制备上下文相关性的模拟中。我们介绍了模拟制备上下文性的信息成本,该信息成本量化了在古典模型或量子模型中模拟上下文相关性所需的附加(否则禁止)的信息。在这两种情况下,我们都表明,使用我们半限制放松的层次结构的变体可以将模拟成本限制在有效的界限上,并且我们以奇怪的多样化的最简单上下文性场景进行了精确计算。
全局:模拟整个Tokamak + Full-F:多尺度物理多离子物种主要离子 /杂质电子:绝热;被困动力学;完全动力学新古典和湍流传输之间的线性化碰撞操作员协同作用浸入边界条件:Sol -like和Limiter [Caschera 18,Dif -Pradalier 22]磁性ripple [Varennes PRL 22,ppcf,ppcf 23]
磁轴承的模拟涉及高度非线性物理,对输入变化高度依赖。此外,在使用经典计算方法时,在现实的计算时间内,这种模拟是耗时而无法运行的。另一方面,经典模型还原技术无法在允许的计算窗口内实现所需的精度。为了解决这种复杂性,这项工作提出了基于物理的计算方法,模型还原技术和机器学习算法的组合,以满足要求。用于表示磁性轴承的物理模型是经典的Cauer梯子网络方法,而模型还原技术是在物理模型解决方案的误差上应用的。后来,在潜在空间中,机器学习算法用于预测潜在空间中校正的演变。结果显示了解决方案的改进,而不会稀释计算时间。该解决方案是几乎实时计算的(几毫秒),并将其与有限的元素参考解决方案进行了比较。关键字:光谱法,减少基础,机器学习,磁性轴承,磁悬浮,长期术语记忆
